Solve for b, a
b=6
a=6
Share
Copied to clipboard
b=3\left(a-4\right)
Consider the first equation. Variable a cannot be equal to 4 since division by zero is not defined. Multiply both sides of the equation by a-4.
b=3a-12
Use the distributive property to multiply 3 by a-4.
3a-12+2a=18
Substitute -12+3a for b in the other equation, b+2a=18.
5a-12=18
Add 3a to 2a.
5a=30
Add 12 to both sides of the equation.
a=6
Divide both sides by 5.
b=3\times 6-12
Substitute 6 for a in b=3a-12. Because the resulting equation contains only one variable, you can solve for b directly.
b=18-12
Multiply 3 times 6.
b=6
Add -12 to 18.
b=6,a=6
The system is now solved.
b=3\left(a-4\right)
Consider the first equation. Variable a cannot be equal to 4 since division by zero is not defined. Multiply both sides of the equation by a-4.
b=3a-12
Use the distributive property to multiply 3 by a-4.
b-3a=-12
Subtract 3a from both sides.
b-3a=-12,b+2a=18
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&-3\\1&2\end{matrix}\right)\left(\begin{matrix}b\\a\end{matrix}\right)=\left(\begin{matrix}-12\\18\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&-3\\1&2\end{matrix}\right))\left(\begin{matrix}1&-3\\1&2\end{matrix}\right)\left(\begin{matrix}b\\a\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\1&2\end{matrix}\right))\left(\begin{matrix}-12\\18\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&-3\\1&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}b\\a\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\1&2\end{matrix}\right))\left(\begin{matrix}-12\\18\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}b\\a\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\1&2\end{matrix}\right))\left(\begin{matrix}-12\\18\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}b\\a\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2-\left(-3\right)}&-\frac{-3}{2-\left(-3\right)}\\-\frac{1}{2-\left(-3\right)}&\frac{1}{2-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}-12\\18\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}b\\a\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5}&\frac{3}{5}\\-\frac{1}{5}&\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}-12\\18\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}b\\a\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5}\left(-12\right)+\frac{3}{5}\times 18\\-\frac{1}{5}\left(-12\right)+\frac{1}{5}\times 18\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}b\\a\end{matrix}\right)=\left(\begin{matrix}6\\6\end{matrix}\right)
Do the arithmetic.
b=6,a=6
Extract the matrix elements b and a.
b=3\left(a-4\right)
Consider the first equation. Variable a cannot be equal to 4 since division by zero is not defined. Multiply both sides of the equation by a-4.
b=3a-12
Use the distributive property to multiply 3 by a-4.
b-3a=-12
Subtract 3a from both sides.
b-3a=-12,b+2a=18
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
b-b-3a-2a=-12-18
Subtract b+2a=18 from b-3a=-12 by subtracting like terms on each side of the equal sign.
-3a-2a=-12-18
Add b to -b. Terms b and -b cancel out, leaving an equation with only one variable that can be solved.
-5a=-12-18
Add -3a to -2a.
-5a=-30
Add -12 to -18.
a=6
Divide both sides by -5.
b+2\times 6=18
Substitute 6 for a in b+2a=18. Because the resulting equation contains only one variable, you can solve for b directly.
b+12=18
Multiply 2 times 6.
b=6
Subtract 12 from both sides of the equation.
b=6,a=6
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}