Solve for x, y
x=\frac{b\left(u+2a\right)}{a}
y=\frac{a\left(u+a-b\right)}{b}
b\neq 0\text{ and }a\neq 0
Graph
Share
Copied to clipboard
ax=2ab+bu
Consider the second equation. Add bu to both sides.
aax-bby=aba+abb
Consider the first equation. Multiply both sides of the equation by ab, the least common multiple of b,a.
a^{2}x-bby=aba+abb
Multiply a and a to get a^{2}.
a^{2}x-b^{2}y=aba+abb
Multiply b and b to get b^{2}.
a^{2}x-b^{2}y=a^{2}b+abb
Multiply a and a to get a^{2}.
a^{2}x-b^{2}y=a^{2}b+ab^{2}
Multiply b and b to get b^{2}.
xa^{2}-yb^{2}=ab^{2}+ba^{2}
Reorder the terms.
ax=bu+2ab,a^{2}x+\left(-b^{2}\right)y=ab^{2}+ba^{2}
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
ax=bu+2ab
Pick one of the two equations which is more simple to solve for x by isolating x on the left hand side of the equal sign.
x=\frac{b\left(u+2a\right)}{a}
Divide both sides by a.
a^{2}\times \frac{b\left(u+2a\right)}{a}+\left(-b^{2}\right)y=ab^{2}+ba^{2}
Substitute \frac{b\left(u+2a\right)}{a} for x in the other equation, a^{2}x+\left(-b^{2}\right)y=ab^{2}+ba^{2}.
ab\left(u+2a\right)+\left(-b^{2}\right)y=ab^{2}+ba^{2}
Multiply a^{2} times \frac{b\left(u+2a\right)}{a}.
\left(-b^{2}\right)y=ab\left(-u+b-a\right)
Subtract b\left(u+2a\right)a from both sides of the equation.
y=-\frac{a\left(-u+b-a\right)}{b}
Divide both sides by -b^{2}.
x=\frac{b\left(u+2a\right)}{a},y=-\frac{a\left(-u+b-a\right)}{b}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}