Skip to main content
Solve for a, b
Tick mark Image

Similar Problems from Web Search

Share

3a=2b
Consider the first equation. Multiply both sides of the equation by 6, the least common multiple of 2,3.
a=\frac{1}{3}\times 2b
Divide both sides by 3.
a=\frac{2}{3}b
Multiply \frac{1}{3} times 2b.
\frac{2}{3}b+b=85
Substitute \frac{2b}{3} for a in the other equation, a+b=85.
\frac{5}{3}b=85
Add \frac{2b}{3} to b.
b=51
Divide both sides of the equation by \frac{5}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
a=\frac{2}{3}\times 51
Substitute 51 for b in a=\frac{2}{3}b. Because the resulting equation contains only one variable, you can solve for a directly.
a=34
Multiply \frac{2}{3} times 51.
a=34,b=51
The system is now solved.
3a=2b
Consider the first equation. Multiply both sides of the equation by 6, the least common multiple of 2,3.
3a-2b=0
Subtract 2b from both sides.
3a-2b=0,a+b=85
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}3&-2\\1&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}0\\85\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}3&-2\\1&1\end{matrix}\right))\left(\begin{matrix}3&-2\\1&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\1&1\end{matrix}\right))\left(\begin{matrix}0\\85\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}3&-2\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\1&1\end{matrix}\right))\left(\begin{matrix}0\\85\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\1&1\end{matrix}\right))\left(\begin{matrix}0\\85\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-\left(-2\right)}&-\frac{-2}{3-\left(-2\right)}\\-\frac{1}{3-\left(-2\right)}&\frac{3}{3-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}0\\85\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}&\frac{2}{5}\\-\frac{1}{5}&\frac{3}{5}\end{matrix}\right)\left(\begin{matrix}0\\85\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5}\times 85\\\frac{3}{5}\times 85\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}34\\51\end{matrix}\right)
Do the arithmetic.
a=34,b=51
Extract the matrix elements a and b.
3a=2b
Consider the first equation. Multiply both sides of the equation by 6, the least common multiple of 2,3.
3a-2b=0
Subtract 2b from both sides.
3a-2b=0,a+b=85
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
3a-2b=0,3a+3b=3\times 85
To make 3a and a equal, multiply all terms on each side of the first equation by 1 and all terms on each side of the second by 3.
3a-2b=0,3a+3b=255
Simplify.
3a-3a-2b-3b=-255
Subtract 3a+3b=255 from 3a-2b=0 by subtracting like terms on each side of the equal sign.
-2b-3b=-255
Add 3a to -3a. Terms 3a and -3a cancel out, leaving an equation with only one variable that can be solved.
-5b=-255
Add -2b to -3b.
b=51
Divide both sides by -5.
a+51=85
Substitute 51 for b in a+b=85. Because the resulting equation contains only one variable, you can solve for a directly.
a=34
Subtract 51 from both sides of the equation.
a=34,b=51
The system is now solved.