Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Share

\frac{\left(a+b\right)\left(a-b\right)}{a+b}\times \frac{ab+a}{a^{2}-2ab+b^{2}}\times \frac{a^{2}-ab}{2b+2}-b
Factor the expressions that are not already factored in \frac{a^{2}-b^{2}}{a+b}.
\left(a-b\right)\times \frac{ab+a}{a^{2}-2ab+b^{2}}\times \frac{a^{2}-ab}{2b+2}-b
Cancel out a+b in both numerator and denominator.
\frac{\left(a-b\right)\left(ab+a\right)}{a^{2}-2ab+b^{2}}\times \frac{a^{2}-ab}{2b+2}-b
Express \left(a-b\right)\times \frac{ab+a}{a^{2}-2ab+b^{2}} as a single fraction.
\frac{\left(a-b\right)\left(ab+a\right)\left(a^{2}-ab\right)}{\left(a^{2}-2ab+b^{2}\right)\left(2b+2\right)}-b
Multiply \frac{\left(a-b\right)\left(ab+a\right)}{a^{2}-2ab+b^{2}} times \frac{a^{2}-ab}{2b+2} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(a-b\right)\left(ab+a\right)\left(a^{2}-ab\right)}{2\left(b+1\right)\left(a-b\right)^{2}}-b
Factor \left(a^{2}-2ab+b^{2}\right)\left(2b+2\right).
\frac{\left(a-b\right)\left(ab+a\right)\left(a^{2}-ab\right)}{2\left(b+1\right)\left(a-b\right)^{2}}-\frac{b\times 2\left(b+1\right)\left(a-b\right)^{2}}{2\left(b+1\right)\left(a-b\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply b times \frac{2\left(b+1\right)\left(a-b\right)^{2}}{2\left(b+1\right)\left(a-b\right)^{2}}.
\frac{\left(a-b\right)\left(ab+a\right)\left(a^{2}-ab\right)-b\times 2\left(b+1\right)\left(a-b\right)^{2}}{2\left(b+1\right)\left(a-b\right)^{2}}
Since \frac{\left(a-b\right)\left(ab+a\right)\left(a^{2}-ab\right)}{2\left(b+1\right)\left(a-b\right)^{2}} and \frac{b\times 2\left(b+1\right)\left(a-b\right)^{2}}{2\left(b+1\right)\left(a-b\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{a^{4}b-a^{3}b^{2}+a^{4}-a^{3}b-b^{2}a^{3}+b^{3}a^{2}-ba^{3}+b^{2}a^{2}-2b^{2}a^{2}+4b^{3}a-2b^{4}-2ba^{2}+4b^{2}a-2b^{3}}{2\left(b+1\right)\left(a-b\right)^{2}}
Do the multiplications in \left(a-b\right)\left(ab+a\right)\left(a^{2}-ab\right)-b\times 2\left(b+1\right)\left(a-b\right)^{2}.
\frac{a^{4}b-2b^{3}+b^{3}a^{2}-2a^{3}b^{2}+a^{4}+4b^{3}a-2a^{3}b-b^{2}a^{2}-2b^{4}+4b^{2}a-2ba^{2}}{2\left(b+1\right)\left(a-b\right)^{2}}
Combine like terms in a^{4}b-a^{3}b^{2}+a^{4}-a^{3}b-b^{2}a^{3}+b^{3}a^{2}-ba^{3}+b^{2}a^{2}-2b^{2}a^{2}+4b^{3}a-2b^{4}-2ba^{2}+4b^{2}a-2b^{3}.
\frac{\left(b+1\right)\left(a-b\right)^{2}\left(a^{2}-2b\right)}{2\left(b+1\right)\left(a-b\right)^{2}}
Factor the expressions that are not already factored in \frac{a^{4}b-2b^{3}+b^{3}a^{2}-2a^{3}b^{2}+a^{4}+4b^{3}a-2a^{3}b-b^{2}a^{2}-2b^{4}+4b^{2}a-2ba^{2}}{2\left(b+1\right)\left(a-b\right)^{2}}.
\frac{a^{2}-2b}{2}
Cancel out \left(b+1\right)\left(a-b\right)^{2} in both numerator and denominator.
\frac{\left(a+b\right)\left(a-b\right)}{a+b}\times \frac{ab+a}{a^{2}-2ab+b^{2}}\times \frac{a^{2}-ab}{2b+2}-b
Factor the expressions that are not already factored in \frac{a^{2}-b^{2}}{a+b}.
\left(a-b\right)\times \frac{ab+a}{a^{2}-2ab+b^{2}}\times \frac{a^{2}-ab}{2b+2}-b
Cancel out a+b in both numerator and denominator.
\frac{\left(a-b\right)\left(ab+a\right)}{a^{2}-2ab+b^{2}}\times \frac{a^{2}-ab}{2b+2}-b
Express \left(a-b\right)\times \frac{ab+a}{a^{2}-2ab+b^{2}} as a single fraction.
\frac{\left(a-b\right)\left(ab+a\right)\left(a^{2}-ab\right)}{\left(a^{2}-2ab+b^{2}\right)\left(2b+2\right)}-b
Multiply \frac{\left(a-b\right)\left(ab+a\right)}{a^{2}-2ab+b^{2}} times \frac{a^{2}-ab}{2b+2} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(a-b\right)\left(ab+a\right)\left(a^{2}-ab\right)}{2\left(b+1\right)\left(a-b\right)^{2}}-b
Factor \left(a^{2}-2ab+b^{2}\right)\left(2b+2\right).
\frac{\left(a-b\right)\left(ab+a\right)\left(a^{2}-ab\right)}{2\left(b+1\right)\left(a-b\right)^{2}}-\frac{b\times 2\left(b+1\right)\left(a-b\right)^{2}}{2\left(b+1\right)\left(a-b\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply b times \frac{2\left(b+1\right)\left(a-b\right)^{2}}{2\left(b+1\right)\left(a-b\right)^{2}}.
\frac{\left(a-b\right)\left(ab+a\right)\left(a^{2}-ab\right)-b\times 2\left(b+1\right)\left(a-b\right)^{2}}{2\left(b+1\right)\left(a-b\right)^{2}}
Since \frac{\left(a-b\right)\left(ab+a\right)\left(a^{2}-ab\right)}{2\left(b+1\right)\left(a-b\right)^{2}} and \frac{b\times 2\left(b+1\right)\left(a-b\right)^{2}}{2\left(b+1\right)\left(a-b\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{a^{4}b-a^{3}b^{2}+a^{4}-a^{3}b-b^{2}a^{3}+b^{3}a^{2}-ba^{3}+b^{2}a^{2}-2b^{2}a^{2}+4b^{3}a-2b^{4}-2ba^{2}+4b^{2}a-2b^{3}}{2\left(b+1\right)\left(a-b\right)^{2}}
Do the multiplications in \left(a-b\right)\left(ab+a\right)\left(a^{2}-ab\right)-b\times 2\left(b+1\right)\left(a-b\right)^{2}.
\frac{a^{4}b-2b^{3}+b^{3}a^{2}-2a^{3}b^{2}+a^{4}+4b^{3}a-2a^{3}b-b^{2}a^{2}-2b^{4}+4b^{2}a-2ba^{2}}{2\left(b+1\right)\left(a-b\right)^{2}}
Combine like terms in a^{4}b-a^{3}b^{2}+a^{4}-a^{3}b-b^{2}a^{3}+b^{3}a^{2}-ba^{3}+b^{2}a^{2}-2b^{2}a^{2}+4b^{3}a-2b^{4}-2ba^{2}+4b^{2}a-2b^{3}.
\frac{\left(b+1\right)\left(a-b\right)^{2}\left(a^{2}-2b\right)}{2\left(b+1\right)\left(a-b\right)^{2}}
Factor the expressions that are not already factored in \frac{a^{4}b-2b^{3}+b^{3}a^{2}-2a^{3}b^{2}+a^{4}+4b^{3}a-2a^{3}b-b^{2}a^{2}-2b^{4}+4b^{2}a-2ba^{2}}{2\left(b+1\right)\left(a-b\right)^{2}}.
\frac{a^{2}-2b}{2}
Cancel out \left(b+1\right)\left(a-b\right)^{2} in both numerator and denominator.