Solve for y, x
x = \frac{85950}{13} = 6611\frac{7}{13} \approx 6611.538461538
y = \frac{61200}{13} = 4707\frac{9}{13} \approx 4707.692307692
Graph
Share
Copied to clipboard
\frac{13}{9}y=6800
Consider the first equation. Combine \frac{7}{9}y and \frac{2}{3}y to get \frac{13}{9}y.
y=6800\times \frac{9}{13}
Multiply both sides by \frac{9}{13}, the reciprocal of \frac{13}{9}.
y=\frac{61200}{13}
Multiply 6800 and \frac{9}{13} to get \frac{61200}{13}.
\frac{2}{9}x=\frac{1}{3}\times \frac{61200}{13}-100
Consider the second equation. Insert the known values of variables into the equation.
\frac{2}{9}x=\frac{20400}{13}-100
Multiply \frac{1}{3} and \frac{61200}{13} to get \frac{20400}{13}.
\frac{2}{9}x=\frac{19100}{13}
Subtract 100 from \frac{20400}{13} to get \frac{19100}{13}.
x=\frac{19100}{13}\times \frac{9}{2}
Multiply both sides by \frac{9}{2}, the reciprocal of \frac{2}{9}.
x=\frac{85950}{13}
Multiply \frac{19100}{13} and \frac{9}{2} to get \frac{85950}{13}.
y=\frac{61200}{13} x=\frac{85950}{13}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}