Solve for A, B
A = \frac{7}{3} = 2\frac{1}{3} \approx 2.333333333
B = \frac{98}{27} = 3\frac{17}{27} \approx 3.62962963
Share
Copied to clipboard
\frac{4}{9}A+B=\frac{14}{3}
Consider the first equation. Subtract 0 from \frac{14}{3} to get \frac{14}{3}.
9A-21=0
Consider the second equation. Combine B and -B to get 0.
9A=21
Add 21 to both sides. Anything plus zero gives itself.
A=\frac{21}{9}
Divide both sides by 9.
A=\frac{7}{3}
Reduce the fraction \frac{21}{9} to lowest terms by extracting and canceling out 3.
\frac{4}{9}\times \frac{7}{3}+B=\frac{14}{3}
Consider the first equation. Insert the known values of variables into the equation.
\frac{28}{27}+B=\frac{14}{3}
Multiply \frac{4}{9} and \frac{7}{3} to get \frac{28}{27}.
B=\frac{14}{3}-\frac{28}{27}
Subtract \frac{28}{27} from both sides.
B=\frac{98}{27}
Subtract \frac{28}{27} from \frac{14}{3} to get \frac{98}{27}.
A=\frac{7}{3} B=\frac{98}{27}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}