\left. \begin{array} { l } { \frac { 3 } { 9 } + \frac { 5 } { 6 } = 1 } \\ { \frac { 9 } { 9 } - \frac { 5 } { 6 } = 1 } \end{array} \right.
Verify
false
Share
Copied to clipboard
\frac{3}{9}+\frac{5}{6}=1\text{ and }1-\frac{5}{6}=1
Divide 9 by 9 to get 1.
\frac{1}{3}+\frac{5}{6}=1\text{ and }1-\frac{5}{6}=1
Reduce the fraction \frac{3}{9} to lowest terms by extracting and canceling out 3.
\frac{2}{6}+\frac{5}{6}=1\text{ and }1-\frac{5}{6}=1
Least common multiple of 3 and 6 is 6. Convert \frac{1}{3} and \frac{5}{6} to fractions with denominator 6.
\frac{2+5}{6}=1\text{ and }1-\frac{5}{6}=1
Since \frac{2}{6} and \frac{5}{6} have the same denominator, add them by adding their numerators.
\frac{7}{6}=1\text{ and }1-\frac{5}{6}=1
Add 2 and 5 to get 7.
\frac{7}{6}=\frac{6}{6}\text{ and }1-\frac{5}{6}=1
Convert 1 to fraction \frac{6}{6}.
\text{false}\text{ and }1-\frac{5}{6}=1
Compare \frac{7}{6} and \frac{6}{6}.
\text{false}\text{ and }\frac{6}{6}-\frac{5}{6}=1
Convert 1 to fraction \frac{6}{6}.
\text{false}\text{ and }\frac{6-5}{6}=1
Since \frac{6}{6} and \frac{5}{6} have the same denominator, subtract them by subtracting their numerators.
\text{false}\text{ and }\frac{1}{6}=1
Subtract 5 from 6 to get 1.
\text{false}\text{ and }\frac{1}{6}=\frac{6}{6}
Convert 1 to fraction \frac{6}{6}.
\text{false}\text{ and }\text{false}
Compare \frac{1}{6} and \frac{6}{6}.
\text{false}
The conjunction of \text{false} and \text{false} is \text{false}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}