Skip to main content
Solve for x, z, y
Tick mark Image

Similar Problems from Web Search

Share

15x+16z=120 15x+8y=120 2y+3z=10
Multiply each equation by the least common multiple of denominators in it. Simplify.
x=8-\frac{16}{15}z
Solve 15x+16z=120 for x.
15\left(8-\frac{16}{15}z\right)+8y=120
Substitute 8-\frac{16}{15}z for x in the equation 15x+8y=120.
z=\frac{1}{2}y y=-\frac{3}{2}z+5
Solve the second equation for z and the third equation for y.
y=-\frac{3}{2}\times \frac{1}{2}y+5
Substitute \frac{1}{2}y for z in the equation y=-\frac{3}{2}z+5.
y=\frac{20}{7}
Solve y=-\frac{3}{2}\times \frac{1}{2}y+5 for y.
z=\frac{1}{2}\times \frac{20}{7}
Substitute \frac{20}{7} for y in the equation z=\frac{1}{2}y.
z=\frac{10}{7}
Calculate z from z=\frac{1}{2}\times \frac{20}{7}.
x=8-\frac{16}{15}\times \frac{10}{7}
Substitute \frac{10}{7} for z in the equation x=8-\frac{16}{15}z.
x=\frac{136}{21}
Calculate x from x=8-\frac{16}{15}\times \frac{10}{7}.
x=\frac{136}{21} z=\frac{10}{7} y=\frac{20}{7}
The system is now solved.