Solve for x, z, y
x = \frac{136}{21} = 6\frac{10}{21} \approx 6.476190476
y = \frac{20}{7} = 2\frac{6}{7} \approx 2.857142857
z = \frac{10}{7} = 1\frac{3}{7} \approx 1.428571429
Share
Copied to clipboard
15x+16z=120 15x+8y=120 2y+3z=10
Multiply each equation by the least common multiple of denominators in it. Simplify.
x=8-\frac{16}{15}z
Solve 15x+16z=120 for x.
15\left(8-\frac{16}{15}z\right)+8y=120
Substitute 8-\frac{16}{15}z for x in the equation 15x+8y=120.
z=\frac{1}{2}y y=-\frac{3}{2}z+5
Solve the second equation for z and the third equation for y.
y=-\frac{3}{2}\times \frac{1}{2}y+5
Substitute \frac{1}{2}y for z in the equation y=-\frac{3}{2}z+5.
y=\frac{20}{7}
Solve y=-\frac{3}{2}\times \frac{1}{2}y+5 for y.
z=\frac{1}{2}\times \frac{20}{7}
Substitute \frac{20}{7} for y in the equation z=\frac{1}{2}y.
z=\frac{10}{7}
Calculate z from z=\frac{1}{2}\times \frac{20}{7}.
x=8-\frac{16}{15}\times \frac{10}{7}
Substitute \frac{10}{7} for z in the equation x=8-\frac{16}{15}z.
x=\frac{136}{21}
Calculate x from x=8-\frac{16}{15}\times \frac{10}{7}.
x=\frac{136}{21} z=\frac{10}{7} y=\frac{20}{7}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}