Solve for x, y
x = \frac{396}{17} = 23\frac{5}{17} \approx 23.294117647
y = \frac{474}{17} = 27\frac{15}{17} \approx 27.882352941
Graph
Share
Copied to clipboard
4\times 2x+9x=396
Consider the first equation. Multiply both sides of the equation by 36, the least common multiple of 9,4.
8x+9x=396
Multiply 4 and 2 to get 8.
17x=396
Combine 8x and 9x to get 17x.
x=\frac{396}{17}
Divide both sides by 17.
\frac{5\times \frac{396}{17}}{12}+\frac{y}{3}=19
Consider the second equation. Insert the known values of variables into the equation.
5\times \frac{396}{17}+4y=228
Multiply both sides of the equation by 12, the least common multiple of 12,3.
\frac{1980}{17}+4y=228
Multiply 5 and \frac{396}{17} to get \frac{1980}{17}.
4y=228-\frac{1980}{17}
Subtract \frac{1980}{17} from both sides.
4y=\frac{1896}{17}
Subtract \frac{1980}{17} from 228 to get \frac{1896}{17}.
y=\frac{\frac{1896}{17}}{4}
Divide both sides by 4.
y=\frac{1896}{17\times 4}
Express \frac{\frac{1896}{17}}{4} as a single fraction.
y=\frac{1896}{68}
Multiply 17 and 4 to get 68.
y=\frac{474}{17}
Reduce the fraction \frac{1896}{68} to lowest terms by extracting and canceling out 4.
x=\frac{396}{17} y=\frac{474}{17}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}