Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

4\times 2\left(x-y\right)+12=3\left(x+y\right)
Consider the first equation. Multiply both sides of the equation by 12, the least common multiple of 3,4.
8\left(x-y\right)+12=3\left(x+y\right)
Multiply 4 and 2 to get 8.
8x-8y+12=3\left(x+y\right)
Use the distributive property to multiply 8 by x-y.
8x-8y+12=3x+3y
Use the distributive property to multiply 3 by x+y.
8x-8y+12-3x=3y
Subtract 3x from both sides.
5x-8y+12=3y
Combine 8x and -3x to get 5x.
5x-8y+12-3y=0
Subtract 3y from both sides.
5x-11y+12=0
Combine -8y and -3y to get -11y.
5x-11y=-12
Subtract 12 from both sides. Anything subtracted from zero gives its negation.
3x+3y-2\left(2x-y\right)=8
Consider the second equation. Use the distributive property to multiply 3 by x+y.
3x+3y-4x+2y=8
Use the distributive property to multiply -2 by 2x-y.
-x+3y+2y=8
Combine 3x and -4x to get -x.
-x+5y=8
Combine 3y and 2y to get 5y.
5x-11y=-12,-x+5y=8
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
5x-11y=-12
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
5x=11y-12
Add 11y to both sides of the equation.
x=\frac{1}{5}\left(11y-12\right)
Divide both sides by 5.
x=\frac{11}{5}y-\frac{12}{5}
Multiply \frac{1}{5} times 11y-12.
-\left(\frac{11}{5}y-\frac{12}{5}\right)+5y=8
Substitute \frac{11y-12}{5} for x in the other equation, -x+5y=8.
-\frac{11}{5}y+\frac{12}{5}+5y=8
Multiply -1 times \frac{11y-12}{5}.
\frac{14}{5}y+\frac{12}{5}=8
Add -\frac{11y}{5} to 5y.
\frac{14}{5}y=\frac{28}{5}
Subtract \frac{12}{5} from both sides of the equation.
y=2
Divide both sides of the equation by \frac{14}{5}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{11}{5}\times 2-\frac{12}{5}
Substitute 2 for y in x=\frac{11}{5}y-\frac{12}{5}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{22-12}{5}
Multiply \frac{11}{5} times 2.
x=2
Add -\frac{12}{5} to \frac{22}{5} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=2,y=2
The system is now solved.
4\times 2\left(x-y\right)+12=3\left(x+y\right)
Consider the first equation. Multiply both sides of the equation by 12, the least common multiple of 3,4.
8\left(x-y\right)+12=3\left(x+y\right)
Multiply 4 and 2 to get 8.
8x-8y+12=3\left(x+y\right)
Use the distributive property to multiply 8 by x-y.
8x-8y+12=3x+3y
Use the distributive property to multiply 3 by x+y.
8x-8y+12-3x=3y
Subtract 3x from both sides.
5x-8y+12=3y
Combine 8x and -3x to get 5x.
5x-8y+12-3y=0
Subtract 3y from both sides.
5x-11y+12=0
Combine -8y and -3y to get -11y.
5x-11y=-12
Subtract 12 from both sides. Anything subtracted from zero gives its negation.
3x+3y-2\left(2x-y\right)=8
Consider the second equation. Use the distributive property to multiply 3 by x+y.
3x+3y-4x+2y=8
Use the distributive property to multiply -2 by 2x-y.
-x+3y+2y=8
Combine 3x and -4x to get -x.
-x+5y=8
Combine 3y and 2y to get 5y.
5x-11y=-12,-x+5y=8
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}5&-11\\-1&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-12\\8\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}5&-11\\-1&5\end{matrix}\right))\left(\begin{matrix}5&-11\\-1&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-11\\-1&5\end{matrix}\right))\left(\begin{matrix}-12\\8\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}5&-11\\-1&5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-11\\-1&5\end{matrix}\right))\left(\begin{matrix}-12\\8\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-11\\-1&5\end{matrix}\right))\left(\begin{matrix}-12\\8\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{5\times 5-\left(-11\left(-1\right)\right)}&-\frac{-11}{5\times 5-\left(-11\left(-1\right)\right)}\\-\frac{-1}{5\times 5-\left(-11\left(-1\right)\right)}&\frac{5}{5\times 5-\left(-11\left(-1\right)\right)}\end{matrix}\right)\left(\begin{matrix}-12\\8\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{14}&\frac{11}{14}\\\frac{1}{14}&\frac{5}{14}\end{matrix}\right)\left(\begin{matrix}-12\\8\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{14}\left(-12\right)+\frac{11}{14}\times 8\\\frac{1}{14}\left(-12\right)+\frac{5}{14}\times 8\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\2\end{matrix}\right)
Do the arithmetic.
x=2,y=2
Extract the matrix elements x and y.
4\times 2\left(x-y\right)+12=3\left(x+y\right)
Consider the first equation. Multiply both sides of the equation by 12, the least common multiple of 3,4.
8\left(x-y\right)+12=3\left(x+y\right)
Multiply 4 and 2 to get 8.
8x-8y+12=3\left(x+y\right)
Use the distributive property to multiply 8 by x-y.
8x-8y+12=3x+3y
Use the distributive property to multiply 3 by x+y.
8x-8y+12-3x=3y
Subtract 3x from both sides.
5x-8y+12=3y
Combine 8x and -3x to get 5x.
5x-8y+12-3y=0
Subtract 3y from both sides.
5x-11y+12=0
Combine -8y and -3y to get -11y.
5x-11y=-12
Subtract 12 from both sides. Anything subtracted from zero gives its negation.
3x+3y-2\left(2x-y\right)=8
Consider the second equation. Use the distributive property to multiply 3 by x+y.
3x+3y-4x+2y=8
Use the distributive property to multiply -2 by 2x-y.
-x+3y+2y=8
Combine 3x and -4x to get -x.
-x+5y=8
Combine 3y and 2y to get 5y.
5x-11y=-12,-x+5y=8
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
-5x-\left(-11y\right)=-\left(-12\right),5\left(-1\right)x+5\times 5y=5\times 8
To make 5x and -x equal, multiply all terms on each side of the first equation by -1 and all terms on each side of the second by 5.
-5x+11y=12,-5x+25y=40
Simplify.
-5x+5x+11y-25y=12-40
Subtract -5x+25y=40 from -5x+11y=12 by subtracting like terms on each side of the equal sign.
11y-25y=12-40
Add -5x to 5x. Terms -5x and 5x cancel out, leaving an equation with only one variable that can be solved.
-14y=12-40
Add 11y to -25y.
-14y=-28
Add 12 to -40.
y=2
Divide both sides by -14.
-x+5\times 2=8
Substitute 2 for y in -x+5y=8. Because the resulting equation contains only one variable, you can solve for x directly.
-x+10=8
Multiply 5 times 2.
-x=-2
Subtract 10 from both sides of the equation.
x=2
Divide both sides by -1.
x=2,y=2
The system is now solved.