Solve for A, B
A=300
B=200
Share
Copied to clipboard
\frac{2}{3}A+B=400,A+\frac{4}{5}B=460
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
\frac{2}{3}A+B=400
Choose one of the equations and solve it for A by isolating A on the left hand side of the equal sign.
\frac{2}{3}A=-B+400
Subtract B from both sides of the equation.
A=\frac{3}{2}\left(-B+400\right)
Divide both sides of the equation by \frac{2}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
A=-\frac{3}{2}B+600
Multiply \frac{3}{2} times -B+400.
-\frac{3}{2}B+600+\frac{4}{5}B=460
Substitute -\frac{3B}{2}+600 for A in the other equation, A+\frac{4}{5}B=460.
-\frac{7}{10}B+600=460
Add -\frac{3B}{2} to \frac{4B}{5}.
-\frac{7}{10}B=-140
Subtract 600 from both sides of the equation.
B=200
Divide both sides of the equation by -\frac{7}{10}, which is the same as multiplying both sides by the reciprocal of the fraction.
A=-\frac{3}{2}\times 200+600
Substitute 200 for B in A=-\frac{3}{2}B+600. Because the resulting equation contains only one variable, you can solve for A directly.
A=-300+600
Multiply -\frac{3}{2} times 200.
A=300
Add 600 to -300.
A=300,B=200
The system is now solved.
\frac{2}{3}A+B=400,A+\frac{4}{5}B=460
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}\frac{2}{3}&1\\1&\frac{4}{5}\end{matrix}\right)\left(\begin{matrix}A\\B\end{matrix}\right)=\left(\begin{matrix}400\\460\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}\frac{2}{3}&1\\1&\frac{4}{5}\end{matrix}\right))\left(\begin{matrix}\frac{2}{3}&1\\1&\frac{4}{5}\end{matrix}\right)\left(\begin{matrix}A\\B\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{2}{3}&1\\1&\frac{4}{5}\end{matrix}\right))\left(\begin{matrix}400\\460\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}\frac{2}{3}&1\\1&\frac{4}{5}\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}A\\B\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{2}{3}&1\\1&\frac{4}{5}\end{matrix}\right))\left(\begin{matrix}400\\460\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}A\\B\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{2}{3}&1\\1&\frac{4}{5}\end{matrix}\right))\left(\begin{matrix}400\\460\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}A\\B\end{matrix}\right)=\left(\begin{matrix}\frac{\frac{4}{5}}{\frac{2}{3}\times \frac{4}{5}-1}&-\frac{1}{\frac{2}{3}\times \frac{4}{5}-1}\\-\frac{1}{\frac{2}{3}\times \frac{4}{5}-1}&\frac{\frac{2}{3}}{\frac{2}{3}\times \frac{4}{5}-1}\end{matrix}\right)\left(\begin{matrix}400\\460\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}A\\B\end{matrix}\right)=\left(\begin{matrix}-\frac{12}{7}&\frac{15}{7}\\\frac{15}{7}&-\frac{10}{7}\end{matrix}\right)\left(\begin{matrix}400\\460\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}A\\B\end{matrix}\right)=\left(\begin{matrix}-\frac{12}{7}\times 400+\frac{15}{7}\times 460\\\frac{15}{7}\times 400-\frac{10}{7}\times 460\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}A\\B\end{matrix}\right)=\left(\begin{matrix}300\\200\end{matrix}\right)
Do the arithmetic.
A=300,B=200
Extract the matrix elements A and B.
\frac{2}{3}A+B=400,A+\frac{4}{5}B=460
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
\frac{2}{3}A+B=400,\frac{2}{3}A+\frac{2}{3}\times \frac{4}{5}B=\frac{2}{3}\times 460
To make \frac{2A}{3} and A equal, multiply all terms on each side of the first equation by 1 and all terms on each side of the second by \frac{2}{3}.
\frac{2}{3}A+B=400,\frac{2}{3}A+\frac{8}{15}B=\frac{920}{3}
Simplify.
\frac{2}{3}A-\frac{2}{3}A+B-\frac{8}{15}B=400-\frac{920}{3}
Subtract \frac{2}{3}A+\frac{8}{15}B=\frac{920}{3} from \frac{2}{3}A+B=400 by subtracting like terms on each side of the equal sign.
B-\frac{8}{15}B=400-\frac{920}{3}
Add \frac{2A}{3} to -\frac{2A}{3}. Terms \frac{2A}{3} and -\frac{2A}{3} cancel out, leaving an equation with only one variable that can be solved.
\frac{7}{15}B=400-\frac{920}{3}
Add B to -\frac{8B}{15}.
\frac{7}{15}B=\frac{280}{3}
Add 400 to -\frac{920}{3}.
B=200
Divide both sides of the equation by \frac{7}{15}, which is the same as multiplying both sides by the reciprocal of the fraction.
A+\frac{4}{5}\times 200=460
Substitute 200 for B in A+\frac{4}{5}B=460. Because the resulting equation contains only one variable, you can solve for A directly.
A+160=460
Multiply \frac{4}{5} times 200.
A=300
Subtract 160 from both sides of the equation.
A=300,B=200
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}