Skip to main content
Solve for v_1, v_2, v_3
Tick mark Image

Similar Problems from Web Search

Share

v_{1}=-50-\frac{1}{4}v_{2}-\frac{5}{8}v_{3}
Solve \frac{2}{25}v_{1}+\frac{1}{50}v_{2}+\frac{1}{20}v_{3}=-4 for v_{1}.
\frac{1}{50}\left(-50-\frac{1}{4}v_{2}-\frac{5}{8}v_{3}\right)-\frac{9}{200}v_{2}+\frac{1}{40}v_{3}=-8 \frac{1}{20}\left(-50-\frac{1}{4}v_{2}-\frac{5}{8}v_{3}\right)+\frac{1}{40}v_{2}-\frac{23}{200}v_{3}=2
Substitute -50-\frac{1}{4}v_{2}-\frac{5}{8}v_{3} for v_{1} in the second and third equation.
v_{2}=140+\frac{1}{4}v_{3} v_{3}=-\frac{400}{13}+\frac{10}{117}v_{2}
Solve these equations for v_{2} and v_{3} respectively.
v_{3}=-\frac{400}{13}+\frac{10}{117}\left(140+\frac{1}{4}v_{3}\right)
Substitute 140+\frac{1}{4}v_{3} for v_{2} in the equation v_{3}=-\frac{400}{13}+\frac{10}{117}v_{2}.
v_{3}=-\frac{4400}{229}
Solve v_{3}=-\frac{400}{13}+\frac{10}{117}\left(140+\frac{1}{4}v_{3}\right) for v_{3}.
v_{2}=140+\frac{1}{4}\left(-\frac{4400}{229}\right)
Substitute -\frac{4400}{229} for v_{3} in the equation v_{2}=140+\frac{1}{4}v_{3}.
v_{2}=\frac{30960}{229}
Calculate v_{2} from v_{2}=140+\frac{1}{4}\left(-\frac{4400}{229}\right).
v_{1}=-50-\frac{1}{4}\times \frac{30960}{229}-\frac{5}{8}\left(-\frac{4400}{229}\right)
Substitute \frac{30960}{229} for v_{2} and -\frac{4400}{229} for v_{3} in the equation v_{1}=-50-\frac{1}{4}v_{2}-\frac{5}{8}v_{3}.
v_{1}=-\frac{16440}{229}
Calculate v_{1} from v_{1}=-50-\frac{1}{4}\times \frac{30960}{229}-\frac{5}{8}\left(-\frac{4400}{229}\right).
v_{1}=-\frac{16440}{229} v_{2}=\frac{30960}{229} v_{3}=-\frac{4400}{229}
The system is now solved.