Solve for L, D
L=2943\sqrt{29}\approx 15848.540027397
D = \frac{5886 \sqrt{29}}{5} \approx 6339.416010959
Share
Copied to clipboard
\frac{5\sqrt{29}}{\left(\sqrt{29}\right)^{2}}L-0\times \frac{0\times 2}{\sqrt{29}}-1500\times 9.81=0
Consider the second equation. Rationalize the denominator of \frac{5}{\sqrt{29}} by multiplying numerator and denominator by \sqrt{29}.
\frac{5\sqrt{29}}{29}L-0\times \frac{0\times 2}{\sqrt{29}}-1500\times 9.81=0
The square of \sqrt{29} is 29.
\frac{5\sqrt{29}L}{29}-0\times \frac{0\times 2}{\sqrt{29}}-1500\times 9.81=0
Express \frac{5\sqrt{29}}{29}L as a single fraction.
\frac{5\sqrt{29}L}{29}-0\times \frac{0}{\sqrt{29}}-1500\times 9.81=0
Multiply 0 and 2 to get 0.
\frac{5\sqrt{29}L}{29}-0\times \frac{0\sqrt{29}}{\left(\sqrt{29}\right)^{2}}-1500\times 9.81=0
Rationalize the denominator of \frac{0}{\sqrt{29}} by multiplying numerator and denominator by \sqrt{29}.
\frac{5\sqrt{29}L}{29}-0\times \frac{0\sqrt{29}}{29}-1500\times 9.81=0
The square of \sqrt{29} is 29.
\frac{5\sqrt{29}L}{29}-0\times \frac{0}{29}-1500\times 9.81=0
Anything times zero gives zero.
\frac{5\sqrt{29}L}{29}-0\times 0-1500\times 9.81=0
Zero divided by any non-zero number gives zero.
\frac{5\sqrt{29}L}{29}-0-1500\times 9.81=0
Multiply 0 and 0 to get 0.
\frac{5\sqrt{29}L}{29}-0-14715=0
Multiply 1500 and 9.81 to get 14715.
\frac{5\sqrt{29}L}{29}-0=14715
Add 14715 to both sides. Anything plus zero gives itself.
\frac{5\sqrt{29}L}{29}=14715+0
Add 0 to both sides.
\frac{5\sqrt{29}L}{29}=14715
Add 14715 and 0 to get 14715.
5\sqrt{29}L=14715\times 29
Multiply both sides by 29.
5\sqrt{29}L=426735
Multiply 14715 and 29 to get 426735.
\frac{2\sqrt{29}}{\left(\sqrt{29}\right)^{2}}L-\frac{5}{\sqrt{29}}D=0
Consider the first equation. Rationalize the denominator of \frac{2}{\sqrt{29}} by multiplying numerator and denominator by \sqrt{29}.
\frac{2\sqrt{29}}{29}L-\frac{5}{\sqrt{29}}D=0
The square of \sqrt{29} is 29.
\frac{2\sqrt{29}L}{29}-\frac{5}{\sqrt{29}}D=0
Express \frac{2\sqrt{29}}{29}L as a single fraction.
\frac{2\sqrt{29}L}{29}-\frac{5\sqrt{29}}{\left(\sqrt{29}\right)^{2}}D=0
Rationalize the denominator of \frac{5}{\sqrt{29}} by multiplying numerator and denominator by \sqrt{29}.
\frac{2\sqrt{29}L}{29}-\frac{5\sqrt{29}}{29}D=0
The square of \sqrt{29} is 29.
\frac{2\sqrt{29}L}{29}-\frac{5\sqrt{29}D}{29}=0
Express \frac{5\sqrt{29}}{29}D as a single fraction.
\frac{2\sqrt{29}L-5\sqrt{29}D}{29}=0
Since \frac{2\sqrt{29}L}{29} and \frac{5\sqrt{29}D}{29} have the same denominator, subtract them by subtracting their numerators.
2\sqrt{29}L-5\sqrt{29}D=0
Multiply both sides by 29. Anything times zero gives zero.
5\sqrt{29}L=426735,2\sqrt{29}L+\left(-5\sqrt{29}\right)D=0
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
5\sqrt{29}L=426735
Pick one of the two equations which is more simple to solve for L by isolating L on the left hand side of the equal sign.
L=2943\sqrt{29}
Divide both sides by 5\sqrt{29}.
2\sqrt{29}\times 2943\sqrt{29}+\left(-5\sqrt{29}\right)D=0
Substitute 2943\sqrt{29} for L in the other equation, 2\sqrt{29}L+\left(-5\sqrt{29}\right)D=0.
170694+\left(-5\sqrt{29}\right)D=0
Multiply 2\sqrt{29} times 2943\sqrt{29}.
\left(-5\sqrt{29}\right)D=-170694
Subtract 170694 from both sides of the equation.
D=\frac{5886\sqrt{29}}{5}
Divide both sides by -5\sqrt{29}.
L=2943\sqrt{29},D=\frac{5886\sqrt{29}}{5}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}