Solve for y, z
z = \frac{139}{9} = 15\frac{4}{9} \approx 15.444444444
Share
Copied to clipboard
y=\frac{47}{6}
Consider the first equation. Divide both sides by 6.
z=\frac{11-\left(-4\times \frac{47}{6}-4\right)}{3}
Consider the second equation. Insert the known values of variables into the equation.
z=\frac{11-\left(-\frac{94}{3}-4\right)}{3}
Multiply -4 and \frac{47}{6} to get -\frac{94}{3}.
z=\frac{11-\left(-\frac{106}{3}\right)}{3}
Subtract 4 from -\frac{94}{3} to get -\frac{106}{3}.
z=\frac{11+\frac{106}{3}}{3}
Multiply -1 and -\frac{106}{3} to get \frac{106}{3}.
z=\frac{\frac{139}{3}}{3}
Add 11 and \frac{106}{3} to get \frac{139}{3}.
z=\frac{139}{3\times 3}
Express \frac{\frac{139}{3}}{3} as a single fraction.
z=\frac{139}{9}
Multiply 3 and 3 to get 9.
y=\frac{47}{6} z=\frac{139}{9}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}