Solve for x, y
y = -\frac{24}{5} = -4\frac{4}{5} = -4.8
Graph
Share
Copied to clipboard
3=4\left(x+2\right)
Consider the first equation. Variable x cannot be equal to -2 since division by zero is not defined. Multiply both sides of the equation by 3\left(x+2\right), the least common multiple of x+2,3.
3=4x+8
Use the distributive property to multiply 4 by x+2.
4x+8=3
Swap sides so that all variable terms are on the left hand side.
4x=3-8
Subtract 8 from both sides.
4x=-5
Subtract 8 from 3 to get -5.
x=-\frac{5}{4}
Divide both sides by 4.
y=\frac{1}{-\frac{5}{4}}+\frac{1}{-\frac{5}{4}+1}
Consider the second equation. Insert the known values of variables into the equation.
y=1\left(-\frac{4}{5}\right)+\frac{1}{-\frac{5}{4}+1}
Divide 1 by -\frac{5}{4} by multiplying 1 by the reciprocal of -\frac{5}{4}.
y=-\frac{4}{5}+\frac{1}{-\frac{5}{4}+1}
Multiply 1 and -\frac{4}{5} to get -\frac{4}{5}.
y=-\frac{4}{5}+\frac{1}{-\frac{1}{4}}
Add -\frac{5}{4} and 1 to get -\frac{1}{4}.
y=-\frac{4}{5}+1\left(-4\right)
Divide 1 by -\frac{1}{4} by multiplying 1 by the reciprocal of -\frac{1}{4}.
y=-\frac{4}{5}-4
Multiply 1 and -4 to get -4.
y=-\frac{24}{5}
Subtract 4 from -\frac{4}{5} to get -\frac{24}{5}.
x=-\frac{5}{4} y=-\frac{24}{5}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}