Solve for m, r, y
y = -\frac{33}{10} = -3\frac{3}{10} = -3.3
r=4
m = -\frac{19}{4} = -4\frac{3}{4} = -4.75
Share
Copied to clipboard
\frac{2}{9}m-\frac{16}{9}=\frac{1}{3}\left(2m+1\right)
Consider the first equation. Use the distributive property to multiply \frac{1}{9} by 2m-16.
\frac{2}{9}m-\frac{16}{9}=\frac{2}{3}m+\frac{1}{3}
Use the distributive property to multiply \frac{1}{3} by 2m+1.
\frac{2}{9}m-\frac{16}{9}-\frac{2}{3}m=\frac{1}{3}
Subtract \frac{2}{3}m from both sides.
-\frac{4}{9}m-\frac{16}{9}=\frac{1}{3}
Combine \frac{2}{9}m and -\frac{2}{3}m to get -\frac{4}{9}m.
-\frac{4}{9}m=\frac{1}{3}+\frac{16}{9}
Add \frac{16}{9} to both sides.
-\frac{4}{9}m=\frac{19}{9}
Add \frac{1}{3} and \frac{16}{9} to get \frac{19}{9}.
m=\frac{19}{9}\left(-\frac{9}{4}\right)
Multiply both sides by -\frac{9}{4}, the reciprocal of -\frac{4}{9}.
m=-\frac{19}{4}
Multiply \frac{19}{9} and -\frac{9}{4} to get -\frac{19}{4}.
-4r-8=4\left(2-2r\right)
Consider the second equation. Use the distributive property to multiply -4 by r+2.
-4r-8=8-8r
Use the distributive property to multiply 4 by 2-2r.
-4r-8+8r=8
Add 8r to both sides.
4r-8=8
Combine -4r and 8r to get 4r.
4r=8+8
Add 8 to both sides.
4r=16
Add 8 and 8 to get 16.
r=\frac{16}{4}
Divide both sides by 4.
r=4
Divide 16 by 4 to get 4.
60+24y=4y-6
Consider the third equation. Use the distributive property to multiply 12 by 5+2y.
60+24y-4y=-6
Subtract 4y from both sides.
60+20y=-6
Combine 24y and -4y to get 20y.
20y=-6-60
Subtract 60 from both sides.
20y=-66
Subtract 60 from -6 to get -66.
y=\frac{-66}{20}
Divide both sides by 20.
y=-\frac{33}{10}
Reduce the fraction \frac{-66}{20} to lowest terms by extracting and canceling out 2.
m=-\frac{19}{4} r=4 y=-\frac{33}{10}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}