\left. \begin{array} { l } { \frac { 1 } { 40 } + \frac { 1 } { 60 } } \\ { \frac { 3 + 2 } { 120 } } \\ { \frac { 5 } { 120 } } \end{array} \right.
Sort
\frac{1}{24},\ \frac{1}{24},\ \frac{1}{24}
Evaluate
\frac{1}{24},\ \frac{1}{24},\ \frac{1}{24}
Share
Copied to clipboard
sort(\frac{3}{120}+\frac{2}{120},\frac{3+2}{120},\frac{5}{120})
Least common multiple of 40 and 60 is 120. Convert \frac{1}{40} and \frac{1}{60} to fractions with denominator 120.
sort(\frac{3+2}{120},\frac{3+2}{120},\frac{5}{120})
Since \frac{3}{120} and \frac{2}{120} have the same denominator, add them by adding their numerators.
sort(\frac{5}{120},\frac{3+2}{120},\frac{5}{120})
Add 3 and 2 to get 5.
sort(\frac{1}{24},\frac{3+2}{120},\frac{5}{120})
Reduce the fraction \frac{5}{120} to lowest terms by extracting and canceling out 5.
sort(\frac{1}{24},\frac{5}{120},\frac{5}{120})
Add 3 and 2 to get 5.
sort(\frac{1}{24},\frac{1}{24},\frac{5}{120})
Reduce the fraction \frac{5}{120} to lowest terms by extracting and canceling out 5.
sort(\frac{1}{24},\frac{1}{24},\frac{1}{24})
Reduce the fraction \frac{5}{120} to lowest terms by extracting and canceling out 5.
\frac{1}{24},\frac{1}{24},\frac{1}{24}
The list values are already in order.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}