Solve for d, a, x
x = \frac{25}{4} = 6\frac{1}{4} = 6.25
d=32
a=2
Share
Copied to clipboard
d=8\times 4
Consider the first equation. Multiply both sides by 4, the reciprocal of \frac{1}{4}.
d=32
Multiply 8 and 4 to get 32.
3a=7-1
Consider the second equation. Subtract 1 from both sides.
3a=6
Subtract 1 from 7 to get 6.
a=\frac{6}{3}
Divide both sides by 3.
a=2
Divide 6 by 3 to get 2.
20x-8=6\left(2x+7\right)
Consider the third equation. Use the distributive property to multiply 4 by 5x-2.
20x-8=12x+42
Use the distributive property to multiply 6 by 2x+7.
20x-8-12x=42
Subtract 12x from both sides.
8x-8=42
Combine 20x and -12x to get 8x.
8x=42+8
Add 8 to both sides.
8x=50
Add 42 and 8 to get 50.
x=\frac{50}{8}
Divide both sides by 8.
x=\frac{25}{4}
Reduce the fraction \frac{50}{8} to lowest terms by extracting and canceling out 2.
d=32 a=2 x=\frac{25}{4}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}