Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{1}{4}+4\left(\frac{1}{4}+4\left(\frac{1}{4}+4\left(\frac{1}{4}+4\left(\frac{3}{12}-\frac{4}{12}\right)\right)\right)\right)-2\left(\frac{1}{2}-2\left(\frac{1}{2}-\frac{1}{3}\right)\right)
Least common multiple of 4 and 3 is 12. Convert \frac{1}{4} and \frac{1}{3} to fractions with denominator 12.
\frac{1}{4}+4\left(\frac{1}{4}+4\left(\frac{1}{4}+4\left(\frac{1}{4}+4\times \frac{3-4}{12}\right)\right)\right)-2\left(\frac{1}{2}-2\left(\frac{1}{2}-\frac{1}{3}\right)\right)
Since \frac{3}{12} and \frac{4}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{4}+4\left(\frac{1}{4}+4\left(\frac{1}{4}+4\left(\frac{1}{4}+4\left(-\frac{1}{12}\right)\right)\right)\right)-2\left(\frac{1}{2}-2\left(\frac{1}{2}-\frac{1}{3}\right)\right)
Subtract 4 from 3 to get -1.
\frac{1}{4}+4\left(\frac{1}{4}+4\left(\frac{1}{4}+4\left(\frac{1}{4}+\frac{4\left(-1\right)}{12}\right)\right)\right)-2\left(\frac{1}{2}-2\left(\frac{1}{2}-\frac{1}{3}\right)\right)
Express 4\left(-\frac{1}{12}\right) as a single fraction.
\frac{1}{4}+4\left(\frac{1}{4}+4\left(\frac{1}{4}+4\left(\frac{1}{4}+\frac{-4}{12}\right)\right)\right)-2\left(\frac{1}{2}-2\left(\frac{1}{2}-\frac{1}{3}\right)\right)
Multiply 4 and -1 to get -4.
\frac{1}{4}+4\left(\frac{1}{4}+4\left(\frac{1}{4}+4\left(\frac{1}{4}-\frac{1}{3}\right)\right)\right)-2\left(\frac{1}{2}-2\left(\frac{1}{2}-\frac{1}{3}\right)\right)
Reduce the fraction \frac{-4}{12} to lowest terms by extracting and canceling out 4.
\frac{1}{4}+4\left(\frac{1}{4}+4\left(\frac{1}{4}+4\left(\frac{3}{12}-\frac{4}{12}\right)\right)\right)-2\left(\frac{1}{2}-2\left(\frac{1}{2}-\frac{1}{3}\right)\right)
Least common multiple of 4 and 3 is 12. Convert \frac{1}{4} and \frac{1}{3} to fractions with denominator 12.
\frac{1}{4}+4\left(\frac{1}{4}+4\left(\frac{1}{4}+4\times \frac{3-4}{12}\right)\right)-2\left(\frac{1}{2}-2\left(\frac{1}{2}-\frac{1}{3}\right)\right)
Since \frac{3}{12} and \frac{4}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{4}+4\left(\frac{1}{4}+4\left(\frac{1}{4}+4\left(-\frac{1}{12}\right)\right)\right)-2\left(\frac{1}{2}-2\left(\frac{1}{2}-\frac{1}{3}\right)\right)
Subtract 4 from 3 to get -1.
\frac{1}{4}+4\left(\frac{1}{4}+4\left(\frac{1}{4}+\frac{4\left(-1\right)}{12}\right)\right)-2\left(\frac{1}{2}-2\left(\frac{1}{2}-\frac{1}{3}\right)\right)
Express 4\left(-\frac{1}{12}\right) as a single fraction.
\frac{1}{4}+4\left(\frac{1}{4}+4\left(\frac{1}{4}+\frac{-4}{12}\right)\right)-2\left(\frac{1}{2}-2\left(\frac{1}{2}-\frac{1}{3}\right)\right)
Multiply 4 and -1 to get -4.
\frac{1}{4}+4\left(\frac{1}{4}+4\left(\frac{1}{4}-\frac{1}{3}\right)\right)-2\left(\frac{1}{2}-2\left(\frac{1}{2}-\frac{1}{3}\right)\right)
Reduce the fraction \frac{-4}{12} to lowest terms by extracting and canceling out 4.
\frac{1}{4}+4\left(\frac{1}{4}+4\left(\frac{3}{12}-\frac{4}{12}\right)\right)-2\left(\frac{1}{2}-2\left(\frac{1}{2}-\frac{1}{3}\right)\right)
Least common multiple of 4 and 3 is 12. Convert \frac{1}{4} and \frac{1}{3} to fractions with denominator 12.
\frac{1}{4}+4\left(\frac{1}{4}+4\times \frac{3-4}{12}\right)-2\left(\frac{1}{2}-2\left(\frac{1}{2}-\frac{1}{3}\right)\right)
Since \frac{3}{12} and \frac{4}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{4}+4\left(\frac{1}{4}+4\left(-\frac{1}{12}\right)\right)-2\left(\frac{1}{2}-2\left(\frac{1}{2}-\frac{1}{3}\right)\right)
Subtract 4 from 3 to get -1.
\frac{1}{4}+4\left(\frac{1}{4}+\frac{4\left(-1\right)}{12}\right)-2\left(\frac{1}{2}-2\left(\frac{1}{2}-\frac{1}{3}\right)\right)
Express 4\left(-\frac{1}{12}\right) as a single fraction.
\frac{1}{4}+4\left(\frac{1}{4}+\frac{-4}{12}\right)-2\left(\frac{1}{2}-2\left(\frac{1}{2}-\frac{1}{3}\right)\right)
Multiply 4 and -1 to get -4.
\frac{1}{4}+4\left(\frac{1}{4}-\frac{1}{3}\right)-2\left(\frac{1}{2}-2\left(\frac{1}{2}-\frac{1}{3}\right)\right)
Reduce the fraction \frac{-4}{12} to lowest terms by extracting and canceling out 4.
\frac{1}{4}+4\left(\frac{3}{12}-\frac{4}{12}\right)-2\left(\frac{1}{2}-2\left(\frac{1}{2}-\frac{1}{3}\right)\right)
Least common multiple of 4 and 3 is 12. Convert \frac{1}{4} and \frac{1}{3} to fractions with denominator 12.
\frac{1}{4}+4\times \frac{3-4}{12}-2\left(\frac{1}{2}-2\left(\frac{1}{2}-\frac{1}{3}\right)\right)
Since \frac{3}{12} and \frac{4}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{4}+4\left(-\frac{1}{12}\right)-2\left(\frac{1}{2}-2\left(\frac{1}{2}-\frac{1}{3}\right)\right)
Subtract 4 from 3 to get -1.
\frac{1}{4}+\frac{4\left(-1\right)}{12}-2\left(\frac{1}{2}-2\left(\frac{1}{2}-\frac{1}{3}\right)\right)
Express 4\left(-\frac{1}{12}\right) as a single fraction.
\frac{1}{4}+\frac{-4}{12}-2\left(\frac{1}{2}-2\left(\frac{1}{2}-\frac{1}{3}\right)\right)
Multiply 4 and -1 to get -4.
\frac{1}{4}-\frac{1}{3}-2\left(\frac{1}{2}-2\left(\frac{1}{2}-\frac{1}{3}\right)\right)
Reduce the fraction \frac{-4}{12} to lowest terms by extracting and canceling out 4.
\frac{3}{12}-\frac{4}{12}-2\left(\frac{1}{2}-2\left(\frac{1}{2}-\frac{1}{3}\right)\right)
Least common multiple of 4 and 3 is 12. Convert \frac{1}{4} and \frac{1}{3} to fractions with denominator 12.
\frac{3-4}{12}-2\left(\frac{1}{2}-2\left(\frac{1}{2}-\frac{1}{3}\right)\right)
Since \frac{3}{12} and \frac{4}{12} have the same denominator, subtract them by subtracting their numerators.
-\frac{1}{12}-2\left(\frac{1}{2}-2\left(\frac{1}{2}-\frac{1}{3}\right)\right)
Subtract 4 from 3 to get -1.
-\frac{1}{12}-2\left(\frac{1}{2}-2\left(\frac{3}{6}-\frac{2}{6}\right)\right)
Least common multiple of 2 and 3 is 6. Convert \frac{1}{2} and \frac{1}{3} to fractions with denominator 6.
-\frac{1}{12}-2\left(\frac{1}{2}-2\times \frac{3-2}{6}\right)
Since \frac{3}{6} and \frac{2}{6} have the same denominator, subtract them by subtracting their numerators.
-\frac{1}{12}-2\left(\frac{1}{2}-2\times \frac{1}{6}\right)
Subtract 2 from 3 to get 1.
-\frac{1}{12}-2\left(\frac{1}{2}-\frac{2}{6}\right)
Multiply 2 and \frac{1}{6} to get \frac{2}{6}.
-\frac{1}{12}-2\left(\frac{1}{2}-\frac{1}{3}\right)
Reduce the fraction \frac{2}{6} to lowest terms by extracting and canceling out 2.
-\frac{1}{12}-2\left(\frac{3}{6}-\frac{2}{6}\right)
Least common multiple of 2 and 3 is 6. Convert \frac{1}{2} and \frac{1}{3} to fractions with denominator 6.
-\frac{1}{12}-2\times \frac{3-2}{6}
Since \frac{3}{6} and \frac{2}{6} have the same denominator, subtract them by subtracting their numerators.
-\frac{1}{12}-2\times \frac{1}{6}
Subtract 2 from 3 to get 1.
-\frac{1}{12}-\frac{2}{6}
Multiply 2 and \frac{1}{6} to get \frac{2}{6}.
-\frac{1}{12}-\frac{1}{3}
Reduce the fraction \frac{2}{6} to lowest terms by extracting and canceling out 2.
-\frac{1}{12}-\frac{4}{12}
Least common multiple of 12 and 3 is 12. Convert -\frac{1}{12} and \frac{1}{3} to fractions with denominator 12.
\frac{-1-4}{12}
Since -\frac{1}{12} and \frac{4}{12} have the same denominator, subtract them by subtracting their numerators.
-\frac{5}{12}
Subtract 4 from -1 to get -5.