Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Share

\frac{1}{36}\times 8000+\frac{10}{3}\times 20^{2}-\frac{200}{3}\times 20+\frac{4000}{9}
Calculate 20 to the power of 3 and get 8000.
\frac{8000}{36}+\frac{10}{3}\times 20^{2}-\frac{200}{3}\times 20+\frac{4000}{9}
Multiply \frac{1}{36} and 8000 to get \frac{8000}{36}.
\frac{2000}{9}+\frac{10}{3}\times 20^{2}-\frac{200}{3}\times 20+\frac{4000}{9}
Reduce the fraction \frac{8000}{36} to lowest terms by extracting and canceling out 4.
\frac{2000}{9}+\frac{10}{3}\times 400-\frac{200}{3}\times 20+\frac{4000}{9}
Calculate 20 to the power of 2 and get 400.
\frac{2000}{9}+\frac{10\times 400}{3}-\frac{200}{3}\times 20+\frac{4000}{9}
Express \frac{10}{3}\times 400 as a single fraction.
\frac{2000}{9}+\frac{4000}{3}-\frac{200}{3}\times 20+\frac{4000}{9}
Multiply 10 and 400 to get 4000.
\frac{2000}{9}+\frac{12000}{9}-\frac{200}{3}\times 20+\frac{4000}{9}
Least common multiple of 9 and 3 is 9. Convert \frac{2000}{9} and \frac{4000}{3} to fractions with denominator 9.
\frac{2000+12000}{9}-\frac{200}{3}\times 20+\frac{4000}{9}
Since \frac{2000}{9} and \frac{12000}{9} have the same denominator, add them by adding their numerators.
\frac{14000}{9}-\frac{200}{3}\times 20+\frac{4000}{9}
Add 2000 and 12000 to get 14000.
\frac{14000}{9}-\frac{200\times 20}{3}+\frac{4000}{9}
Express \frac{200}{3}\times 20 as a single fraction.
\frac{14000}{9}-\frac{4000}{3}+\frac{4000}{9}
Multiply 200 and 20 to get 4000.
\frac{14000}{9}-\frac{12000}{9}+\frac{4000}{9}
Least common multiple of 9 and 3 is 9. Convert \frac{14000}{9} and \frac{4000}{3} to fractions with denominator 9.
\frac{14000-12000}{9}+\frac{4000}{9}
Since \frac{14000}{9} and \frac{12000}{9} have the same denominator, subtract them by subtracting their numerators.
\frac{2000}{9}+\frac{4000}{9}
Subtract 12000 from 14000 to get 2000.
\frac{2000+4000}{9}
Since \frac{2000}{9} and \frac{4000}{9} have the same denominator, add them by adding their numerators.
\frac{6000}{9}
Add 2000 and 4000 to get 6000.
\frac{2000}{3}
Reduce the fraction \frac{6000}{9} to lowest terms by extracting and canceling out 3.