Solve for a, v_0, s_0
a=-32
v_{0}=16
s_{0}=132
Share
Copied to clipboard
v_{0}=-\frac{1}{2}a-s_{0}+132
Solve \frac{1}{2}a+v_{0}+s_{0}=132 for v_{0}.
2a+2\left(-\frac{1}{2}a-s_{0}+132\right)+s_{0}=100 \frac{9}{2}a+3\left(-\frac{1}{2}a-s_{0}+132\right)+s_{0}=36
Substitute -\frac{1}{2}a-s_{0}+132 for v_{0} in the second and third equation.
a=-164+s_{0} s_{0}=180+\frac{3}{2}a
Solve these equations for a and s_{0} respectively.
s_{0}=180+\frac{3}{2}\left(-164+s_{0}\right)
Substitute -164+s_{0} for a in the equation s_{0}=180+\frac{3}{2}a.
s_{0}=132
Solve s_{0}=180+\frac{3}{2}\left(-164+s_{0}\right) for s_{0}.
a=-164+132
Substitute 132 for s_{0} in the equation a=-164+s_{0}.
a=-32
Calculate a from a=-164+132.
v_{0}=-\frac{1}{2}\left(-32\right)-132+132
Substitute -32 for a and 132 for s_{0} in the equation v_{0}=-\frac{1}{2}a-s_{0}+132.
v_{0}=16
Calculate v_{0} from v_{0}=-\frac{1}{2}\left(-32\right)-132+132.
a=-32 v_{0}=16 s_{0}=132
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}