Skip to main content
Solve for x, N_1
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{1}{2}\left(x+40\right)=600-N_{1}
Consider the first equation. Add -80 and 120 to get 40.
\frac{1}{2}x+20=600-N_{1}
Use the distributive property to multiply \frac{1}{2} by x+40.
\frac{1}{2}x+20+N_{1}=600
Add N_{1} to both sides.
\frac{1}{2}x+N_{1}=600-20
Subtract 20 from both sides.
\frac{1}{2}x+N_{1}=580
Subtract 20 from 600 to get 580.
\frac{1}{2}\left(x+60\right)=600-\frac{12}{13}N_{1}
Consider the second equation. Add -40 and 100 to get 60.
\frac{1}{2}x+30=600-\frac{12}{13}N_{1}
Use the distributive property to multiply \frac{1}{2} by x+60.
\frac{1}{2}x+30+\frac{12}{13}N_{1}=600
Add \frac{12}{13}N_{1} to both sides.
\frac{1}{2}x+\frac{12}{13}N_{1}=600-30
Subtract 30 from both sides.
\frac{1}{2}x+\frac{12}{13}N_{1}=570
Subtract 30 from 600 to get 570.
\frac{1}{2}x+N_{1}=580,\frac{1}{2}x+\frac{12}{13}N_{1}=570
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
\frac{1}{2}x+N_{1}=580
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
\frac{1}{2}x=-N_{1}+580
Subtract N_{1} from both sides of the equation.
x=2\left(-N_{1}+580\right)
Multiply both sides by 2.
x=-2N_{1}+1160
Multiply 2 times -N_{1}+580.
\frac{1}{2}\left(-2N_{1}+1160\right)+\frac{12}{13}N_{1}=570
Substitute -2N_{1}+1160 for x in the other equation, \frac{1}{2}x+\frac{12}{13}N_{1}=570.
-N_{1}+580+\frac{12}{13}N_{1}=570
Multiply \frac{1}{2} times -2N_{1}+1160.
-\frac{1}{13}N_{1}+580=570
Add -N_{1} to \frac{12N_{1}}{13}.
-\frac{1}{13}N_{1}=-10
Subtract 580 from both sides of the equation.
N_{1}=130
Multiply both sides by -13.
x=-2\times 130+1160
Substitute 130 for N_{1} in x=-2N_{1}+1160. Because the resulting equation contains only one variable, you can solve for x directly.
x=-260+1160
Multiply -2 times 130.
x=900
Add 1160 to -260.
x=900,N_{1}=130
The system is now solved.
\frac{1}{2}\left(x+40\right)=600-N_{1}
Consider the first equation. Add -80 and 120 to get 40.
\frac{1}{2}x+20=600-N_{1}
Use the distributive property to multiply \frac{1}{2} by x+40.
\frac{1}{2}x+20+N_{1}=600
Add N_{1} to both sides.
\frac{1}{2}x+N_{1}=600-20
Subtract 20 from both sides.
\frac{1}{2}x+N_{1}=580
Subtract 20 from 600 to get 580.
\frac{1}{2}\left(x+60\right)=600-\frac{12}{13}N_{1}
Consider the second equation. Add -40 and 100 to get 60.
\frac{1}{2}x+30=600-\frac{12}{13}N_{1}
Use the distributive property to multiply \frac{1}{2} by x+60.
\frac{1}{2}x+30+\frac{12}{13}N_{1}=600
Add \frac{12}{13}N_{1} to both sides.
\frac{1}{2}x+\frac{12}{13}N_{1}=600-30
Subtract 30 from both sides.
\frac{1}{2}x+\frac{12}{13}N_{1}=570
Subtract 30 from 600 to get 570.
\frac{1}{2}x+N_{1}=580,\frac{1}{2}x+\frac{12}{13}N_{1}=570
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}\frac{1}{2}&1\\\frac{1}{2}&\frac{12}{13}\end{matrix}\right)\left(\begin{matrix}x\\N_{1}\end{matrix}\right)=\left(\begin{matrix}580\\570\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}\frac{1}{2}&1\\\frac{1}{2}&\frac{12}{13}\end{matrix}\right))\left(\begin{matrix}\frac{1}{2}&1\\\frac{1}{2}&\frac{12}{13}\end{matrix}\right)\left(\begin{matrix}x\\N_{1}\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{2}&1\\\frac{1}{2}&\frac{12}{13}\end{matrix}\right))\left(\begin{matrix}580\\570\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}\frac{1}{2}&1\\\frac{1}{2}&\frac{12}{13}\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\N_{1}\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{2}&1\\\frac{1}{2}&\frac{12}{13}\end{matrix}\right))\left(\begin{matrix}580\\570\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\N_{1}\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{2}&1\\\frac{1}{2}&\frac{12}{13}\end{matrix}\right))\left(\begin{matrix}580\\570\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\N_{1}\end{matrix}\right)=\left(\begin{matrix}\frac{\frac{12}{13}}{\frac{1}{2}\times \frac{12}{13}-\frac{1}{2}}&-\frac{1}{\frac{1}{2}\times \frac{12}{13}-\frac{1}{2}}\\-\frac{\frac{1}{2}}{\frac{1}{2}\times \frac{12}{13}-\frac{1}{2}}&\frac{\frac{1}{2}}{\frac{1}{2}\times \frac{12}{13}-\frac{1}{2}}\end{matrix}\right)\left(\begin{matrix}580\\570\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\N_{1}\end{matrix}\right)=\left(\begin{matrix}-24&26\\13&-13\end{matrix}\right)\left(\begin{matrix}580\\570\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\N_{1}\end{matrix}\right)=\left(\begin{matrix}-24\times 580+26\times 570\\13\times 580-13\times 570\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\N_{1}\end{matrix}\right)=\left(\begin{matrix}900\\130\end{matrix}\right)
Do the arithmetic.
x=900,N_{1}=130
Extract the matrix elements x and N_{1}.
\frac{1}{2}\left(x+40\right)=600-N_{1}
Consider the first equation. Add -80 and 120 to get 40.
\frac{1}{2}x+20=600-N_{1}
Use the distributive property to multiply \frac{1}{2} by x+40.
\frac{1}{2}x+20+N_{1}=600
Add N_{1} to both sides.
\frac{1}{2}x+N_{1}=600-20
Subtract 20 from both sides.
\frac{1}{2}x+N_{1}=580
Subtract 20 from 600 to get 580.
\frac{1}{2}\left(x+60\right)=600-\frac{12}{13}N_{1}
Consider the second equation. Add -40 and 100 to get 60.
\frac{1}{2}x+30=600-\frac{12}{13}N_{1}
Use the distributive property to multiply \frac{1}{2} by x+60.
\frac{1}{2}x+30+\frac{12}{13}N_{1}=600
Add \frac{12}{13}N_{1} to both sides.
\frac{1}{2}x+\frac{12}{13}N_{1}=600-30
Subtract 30 from both sides.
\frac{1}{2}x+\frac{12}{13}N_{1}=570
Subtract 30 from 600 to get 570.
\frac{1}{2}x+N_{1}=580,\frac{1}{2}x+\frac{12}{13}N_{1}=570
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
\frac{1}{2}x-\frac{1}{2}x+N_{1}-\frac{12}{13}N_{1}=580-570
Subtract \frac{1}{2}x+\frac{12}{13}N_{1}=570 from \frac{1}{2}x+N_{1}=580 by subtracting like terms on each side of the equal sign.
N_{1}-\frac{12}{13}N_{1}=580-570
Add \frac{x}{2} to -\frac{x}{2}. Terms \frac{x}{2} and -\frac{x}{2} cancel out, leaving an equation with only one variable that can be solved.
\frac{1}{13}N_{1}=580-570
Add N_{1} to -\frac{12N_{1}}{13}.
\frac{1}{13}N_{1}=10
Add 580 to -570.
N_{1}=130
Multiply both sides by 13.
\frac{1}{2}x+\frac{12}{13}\times 130=570
Substitute 130 for N_{1} in \frac{1}{2}x+\frac{12}{13}N_{1}=570. Because the resulting equation contains only one variable, you can solve for x directly.
\frac{1}{2}x+120=570
Multiply \frac{12}{13} times 130.
\frac{1}{2}x=450
Subtract 120 from both sides of the equation.
x=900
Multiply both sides by 2.
x=900,N_{1}=130
The system is now solved.