Evaluate
\frac{16447}{16512}\approx 0.996063469
Factor
\frac{16447}{2 ^ {7} \cdot 3 \cdot 43} = 0.9960634689922481
Share
Copied to clipboard
\frac{2}{4}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{258}
Least common multiple of 2 and 4 is 4. Convert \frac{1}{2} and \frac{1}{4} to fractions with denominator 4.
\frac{2+1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{258}
Since \frac{2}{4} and \frac{1}{4} have the same denominator, add them by adding their numerators.
\frac{3}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{258}
Add 2 and 1 to get 3.
\frac{6}{8}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{258}
Least common multiple of 4 and 8 is 8. Convert \frac{3}{4} and \frac{1}{8} to fractions with denominator 8.
\frac{6+1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{258}
Since \frac{6}{8} and \frac{1}{8} have the same denominator, add them by adding their numerators.
\frac{7}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{258}
Add 6 and 1 to get 7.
\frac{14}{16}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{258}
Least common multiple of 8 and 16 is 16. Convert \frac{7}{8} and \frac{1}{16} to fractions with denominator 16.
\frac{14+1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{258}
Since \frac{14}{16} and \frac{1}{16} have the same denominator, add them by adding their numerators.
\frac{15}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{258}
Add 14 and 1 to get 15.
\frac{30}{32}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{258}
Least common multiple of 16 and 32 is 32. Convert \frac{15}{16} and \frac{1}{32} to fractions with denominator 32.
\frac{30+1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{258}
Since \frac{30}{32} and \frac{1}{32} have the same denominator, add them by adding their numerators.
\frac{31}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{258}
Add 30 and 1 to get 31.
\frac{62}{64}+\frac{1}{64}+\frac{1}{128}+\frac{1}{258}
Least common multiple of 32 and 64 is 64. Convert \frac{31}{32} and \frac{1}{64} to fractions with denominator 64.
\frac{62+1}{64}+\frac{1}{128}+\frac{1}{258}
Since \frac{62}{64} and \frac{1}{64} have the same denominator, add them by adding their numerators.
\frac{63}{64}+\frac{1}{128}+\frac{1}{258}
Add 62 and 1 to get 63.
\frac{126}{128}+\frac{1}{128}+\frac{1}{258}
Least common multiple of 64 and 128 is 128. Convert \frac{63}{64} and \frac{1}{128} to fractions with denominator 128.
\frac{126+1}{128}+\frac{1}{258}
Since \frac{126}{128} and \frac{1}{128} have the same denominator, add them by adding their numerators.
\frac{127}{128}+\frac{1}{258}
Add 126 and 1 to get 127.
\frac{16383}{16512}+\frac{64}{16512}
Least common multiple of 128 and 258 is 16512. Convert \frac{127}{128} and \frac{1}{258} to fractions with denominator 16512.
\frac{16383+64}{16512}
Since \frac{16383}{16512} and \frac{64}{16512} have the same denominator, add them by adding their numerators.
\frac{16447}{16512}
Add 16383 and 64 to get 16447.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}