Solve for U_1, U_2, I_x
U_{1}=4.6
U_{2}=4.08
I_{x}=-0.256
Share
Copied to clipboard
U_{1}=4.6 \frac{1}{2}\left(U_{1}-U_{2}\right)+5I_{x}+\frac{1}{4}U_{2}=0 \frac{1}{10}U_{1}+\left(U_{1}-U_{2}\right)\times \frac{1}{2}=5I_{x}+2
Reorder the equations.
\frac{1}{2}\left(4.6-U_{2}\right)+5I_{x}+\frac{1}{4}U_{2}=0 \frac{1}{10}\times 4.6+\left(4.6-U_{2}\right)\times \frac{1}{2}=5I_{x}+2
Substitute 4.6 for U_{1} in the second and third equation.
U_{2}=\frac{46}{5}+20I_{x} I_{x}=\frac{19}{125}-\frac{1}{10}U_{2}
Solve these equations for U_{2} and I_{x} respectively.
I_{x}=\frac{19}{125}-\frac{1}{10}\left(\frac{46}{5}+20I_{x}\right)
Substitute \frac{46}{5}+20I_{x} for U_{2} in the equation I_{x}=\frac{19}{125}-\frac{1}{10}U_{2}.
I_{x}=-\frac{32}{125}
Solve I_{x}=\frac{19}{125}-\frac{1}{10}\left(\frac{46}{5}+20I_{x}\right) for I_{x}.
U_{2}=\frac{46}{5}+20\left(-\frac{32}{125}\right)
Substitute -\frac{32}{125} for I_{x} in the equation U_{2}=\frac{46}{5}+20I_{x}.
U_{2}=\frac{102}{25}
Calculate U_{2} from U_{2}=\frac{46}{5}+20\left(-\frac{32}{125}\right).
U_{1}=4.6 U_{2}=\frac{102}{25} I_{x}=-\frac{32}{125}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}