Skip to main content
Solve for U_1, U_2, I_x
Tick mark Image

Similar Problems from Web Search

Share

U_{1}=4.6 \frac{1}{2}\left(U_{1}-U_{2}\right)+5I_{x}+\frac{1}{4}U_{2}=0 \frac{1}{10}U_{1}+\left(U_{1}-U_{2}\right)\times \frac{1}{2}=5I_{x}+2
Reorder the equations.
\frac{1}{2}\left(4.6-U_{2}\right)+5I_{x}+\frac{1}{4}U_{2}=0 \frac{1}{10}\times 4.6+\left(4.6-U_{2}\right)\times \frac{1}{2}=5I_{x}+2
Substitute 4.6 for U_{1} in the second and third equation.
U_{2}=\frac{46}{5}+20I_{x} I_{x}=\frac{19}{125}-\frac{1}{10}U_{2}
Solve these equations for U_{2} and I_{x} respectively.
I_{x}=\frac{19}{125}-\frac{1}{10}\left(\frac{46}{5}+20I_{x}\right)
Substitute \frac{46}{5}+20I_{x} for U_{2} in the equation I_{x}=\frac{19}{125}-\frac{1}{10}U_{2}.
I_{x}=-\frac{32}{125}
Solve I_{x}=\frac{19}{125}-\frac{1}{10}\left(\frac{46}{5}+20I_{x}\right) for I_{x}.
U_{2}=\frac{46}{5}+20\left(-\frac{32}{125}\right)
Substitute -\frac{32}{125} for I_{x} in the equation U_{2}=\frac{46}{5}+20I_{x}.
U_{2}=\frac{102}{25}
Calculate U_{2} from U_{2}=\frac{46}{5}+20\left(-\frac{32}{125}\right).
U_{1}=4.6 U_{2}=\frac{102}{25} I_{x}=-\frac{32}{125}
The system is now solved.