Skip to main content
Solve for U_1, U_2, I_x
Tick mark Image

Similar Problems from Web Search

Share

I_{x}=\frac{6}{13} \frac{1}{2}\left(U_{1}-U_{2}\right)+5I_{x}+\frac{1}{4}U_{2}=0 \frac{1}{10}U_{1}+\left(U_{1}-U_{2}\right)\times \frac{1}{2}=5I_{x}+2
Reorder the equations.
\frac{1}{2}\left(U_{1}-U_{2}\right)+5\times \frac{6}{13}+\frac{1}{4}U_{2}=0 \frac{1}{10}U_{1}+\left(U_{1}-U_{2}\right)\times \frac{1}{2}=5\times \frac{6}{13}+2
Substitute \frac{6}{13} for I_{x} in the second and third equation.
U_{2}=\frac{120}{13}+2U_{1} U_{1}=\frac{280}{39}+\frac{5}{6}U_{2}
Solve these equations for U_{2} and U_{1} respectively.
U_{1}=\frac{280}{39}+\frac{5}{6}\left(\frac{120}{13}+2U_{1}\right)
Substitute \frac{120}{13}+2U_{1} for U_{2} in the equation U_{1}=\frac{280}{39}+\frac{5}{6}U_{2}.
U_{1}=-\frac{290}{13}
Solve U_{1}=\frac{280}{39}+\frac{5}{6}\left(\frac{120}{13}+2U_{1}\right) for U_{1}.
U_{2}=\frac{120}{13}+2\left(-\frac{290}{13}\right)
Substitute -\frac{290}{13} for U_{1} in the equation U_{2}=\frac{120}{13}+2U_{1}.
U_{2}=-\frac{460}{13}
Calculate U_{2} from U_{2}=\frac{120}{13}+2\left(-\frac{290}{13}\right).
U_{1}=-\frac{290}{13} U_{2}=-\frac{460}{13} I_{x}=\frac{6}{13}
The system is now solved.