Solve for y, t
y=2
t=-\frac{1}{2}=-0.5
Share
Copied to clipboard
\left(y+2\right)^{2}=3y+6+y^{2}
Consider the first equation. Multiply both sides of the equation by 3.
y^{2}+4y+4=3y+6+y^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(y+2\right)^{2}.
y^{2}+4y+4-3y=6+y^{2}
Subtract 3y from both sides.
y^{2}+y+4=6+y^{2}
Combine 4y and -3y to get y.
y^{2}+y+4-y^{2}=6
Subtract y^{2} from both sides.
y+4=6
Combine y^{2} and -y^{2} to get 0.
y=6-4
Subtract 4 from both sides.
y=2
Subtract 4 from 6 to get 2.
t^{2}-1=\left(t+2\right)t
Consider the second equation. Consider \left(t+1\right)\left(t-1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
t^{2}-1=t^{2}+2t
Use the distributive property to multiply t+2 by t.
t^{2}-1-t^{2}=2t
Subtract t^{2} from both sides.
-1=2t
Combine t^{2} and -t^{2} to get 0.
2t=-1
Swap sides so that all variable terms are on the left hand side.
t=-\frac{1}{2}
Divide both sides by 2.
y=2 t=-\frac{1}{2}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}