\left. \begin{array} { l } { \alpha - 3 \sin \alpha + \cos \alpha = 8.1 } \\ { \operatorname { cog } _ { 3 } x + \log _ { 5 } 2 \cdot \log _ { 4 } 7 = \operatorname { lo } _ { 0 } } \end{array} \right.
Solve for x (complex solution)
\left\{\begin{matrix}x=-\frac{-2lo_{0}+\log_{5}\left(7\right)}{2cg_{3}o}\text{, }&o\neq 0\text{ and }g_{3}\neq 0\text{ and }c\neq 0\text{ and }\alpha +\left(\frac{1}{2}+\frac{3}{2}i\right)e^{i\alpha }+\left(\frac{1}{2}-\frac{3}{2}i\right)e^{-i\alpha }-8.1=0\\x\in \mathrm{C}\text{, }&\left(o_{0}=\frac{\log_{5}\left(7\right)}{2l}\text{ and }l\neq 0\text{ and }g_{3}=0\text{ and }\alpha +\left(\frac{1}{2}+\frac{3}{2}i\right)e^{i\alpha }+\left(\frac{1}{2}-\frac{3}{2}i\right)e^{-i\alpha }-\frac{81}{10}=0\right)\text{ or }\left(o_{0}=\frac{\log_{5}\left(7\right)}{2l}\text{ and }l\neq 0\text{ and }o=0\text{ and }\alpha +\left(\frac{1}{2}+\frac{3}{2}i\right)e^{i\alpha }+\left(\frac{1}{2}-\frac{3}{2}i\right)e^{-i\alpha }-\frac{81}{10}=0\right)\text{ or }\left(l=\frac{\log_{5}\left(7\right)}{2o_{0}}\text{ and }o_{0}\neq 0\text{ and }c=0\text{ and }o\neq 0\text{ and }g_{3}\neq 0\text{ and }\alpha +\left(\frac{1}{2}+\frac{3}{2}i\right)e^{i\alpha }+\left(\frac{1}{2}-\frac{3}{2}i\right)e^{-i\alpha }-\frac{81}{10}=0\right)\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=-\frac{-2lo_{0}+\log_{5}\left(7\right)}{2cg_{3}o}\text{, }&o\neq 0\text{ and }g_{3}\neq 0\text{ and }c\neq 0\text{ and }\cos(\alpha )-3\sin(\alpha )+\alpha -8.1=0\\x\in \mathrm{R}\text{, }&\left(o_{0}=\frac{\log_{5}\left(7\right)}{2l}\text{ and }l\neq 0\text{ and }g_{3}=0\text{ and }\cos(\alpha )-3\sin(\alpha )+\alpha -8.1=0\right)\text{ or }\left(o_{0}=\frac{\log_{5}\left(7\right)}{2l}\text{ and }l\neq 0\text{ and }o=0\text{ and }\cos(\alpha )-3\sin(\alpha )+\alpha -8.1=0\right)\text{ or }\left(l=\frac{\log_{5}\left(7\right)}{2o_{0}}\text{ and }o_{0}\neq 0\text{ and }c=0\text{ and }o\neq 0\text{ and }g_{3}\neq 0\text{ and }\cos(\alpha )-3\sin(\alpha )+\alpha -8.1=0\right)\end{matrix}\right.
Share
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}