Skip to main content
Solve for m
Tick mark Image

Similar Problems from Web Search

Share

\frac{21}{33}+\frac{22}{33}+\frac{23}{33}+\frac{24}{33}+\frac{25}{33}+\frac{26}{33}+\frac{27}{33}+\frac{28}{33}+\frac{29}{33}+\frac{30}{33}=m^{2}\pi
Multiply m and m to get m^{2}.
\frac{21+22}{33}+\frac{23}{33}+\frac{24}{33}+\frac{25}{33}+\frac{26}{33}+\frac{27}{33}+\frac{28}{33}+\frac{29}{33}+\frac{30}{33}=m^{2}\pi
Since \frac{21}{33} and \frac{22}{33} have the same denominator, add them by adding their numerators.
\frac{43}{33}+\frac{23}{33}+\frac{24}{33}+\frac{25}{33}+\frac{26}{33}+\frac{27}{33}+\frac{28}{33}+\frac{29}{33}+\frac{30}{33}=m^{2}\pi
Add 21 and 22 to get 43.
\frac{43+23}{33}+\frac{24}{33}+\frac{25}{33}+\frac{26}{33}+\frac{27}{33}+\frac{28}{33}+\frac{29}{33}+\frac{30}{33}=m^{2}\pi
Since \frac{43}{33} and \frac{23}{33} have the same denominator, add them by adding their numerators.
\frac{66}{33}+\frac{24}{33}+\frac{25}{33}+\frac{26}{33}+\frac{27}{33}+\frac{28}{33}+\frac{29}{33}+\frac{30}{33}=m^{2}\pi
Add 43 and 23 to get 66.
2+\frac{24}{33}+\frac{25}{33}+\frac{26}{33}+\frac{27}{33}+\frac{28}{33}+\frac{29}{33}+\frac{30}{33}=m^{2}\pi
Divide 66 by 33 to get 2.
2+\frac{8}{11}+\frac{25}{33}+\frac{26}{33}+\frac{27}{33}+\frac{28}{33}+\frac{29}{33}+\frac{30}{33}=m^{2}\pi
Reduce the fraction \frac{24}{33} to lowest terms by extracting and canceling out 3.
\frac{22}{11}+\frac{8}{11}+\frac{25}{33}+\frac{26}{33}+\frac{27}{33}+\frac{28}{33}+\frac{29}{33}+\frac{30}{33}=m^{2}\pi
Convert 2 to fraction \frac{22}{11}.
\frac{22+8}{11}+\frac{25}{33}+\frac{26}{33}+\frac{27}{33}+\frac{28}{33}+\frac{29}{33}+\frac{30}{33}=m^{2}\pi
Since \frac{22}{11} and \frac{8}{11} have the same denominator, add them by adding their numerators.
\frac{30}{11}+\frac{25}{33}+\frac{26}{33}+\frac{27}{33}+\frac{28}{33}+\frac{29}{33}+\frac{30}{33}=m^{2}\pi
Add 22 and 8 to get 30.
\frac{90}{33}+\frac{25}{33}+\frac{26}{33}+\frac{27}{33}+\frac{28}{33}+\frac{29}{33}+\frac{30}{33}=m^{2}\pi
Least common multiple of 11 and 33 is 33. Convert \frac{30}{11} and \frac{25}{33} to fractions with denominator 33.
\frac{90+25}{33}+\frac{26}{33}+\frac{27}{33}+\frac{28}{33}+\frac{29}{33}+\frac{30}{33}=m^{2}\pi
Since \frac{90}{33} and \frac{25}{33} have the same denominator, add them by adding their numerators.
\frac{115}{33}+\frac{26}{33}+\frac{27}{33}+\frac{28}{33}+\frac{29}{33}+\frac{30}{33}=m^{2}\pi
Add 90 and 25 to get 115.
\frac{115+26}{33}+\frac{27}{33}+\frac{28}{33}+\frac{29}{33}+\frac{30}{33}=m^{2}\pi
Since \frac{115}{33} and \frac{26}{33} have the same denominator, add them by adding their numerators.
\frac{141}{33}+\frac{27}{33}+\frac{28}{33}+\frac{29}{33}+\frac{30}{33}=m^{2}\pi
Add 115 and 26 to get 141.
\frac{47}{11}+\frac{27}{33}+\frac{28}{33}+\frac{29}{33}+\frac{30}{33}=m^{2}\pi
Reduce the fraction \frac{141}{33} to lowest terms by extracting and canceling out 3.
\frac{47}{11}+\frac{9}{11}+\frac{28}{33}+\frac{29}{33}+\frac{30}{33}=m^{2}\pi
Reduce the fraction \frac{27}{33} to lowest terms by extracting and canceling out 3.
\frac{47+9}{11}+\frac{28}{33}+\frac{29}{33}+\frac{30}{33}=m^{2}\pi
Since \frac{47}{11} and \frac{9}{11} have the same denominator, add them by adding their numerators.
\frac{56}{11}+\frac{28}{33}+\frac{29}{33}+\frac{30}{33}=m^{2}\pi
Add 47 and 9 to get 56.
\frac{168}{33}+\frac{28}{33}+\frac{29}{33}+\frac{30}{33}=m^{2}\pi
Least common multiple of 11 and 33 is 33. Convert \frac{56}{11} and \frac{28}{33} to fractions with denominator 33.
\frac{168+28}{33}+\frac{29}{33}+\frac{30}{33}=m^{2}\pi
Since \frac{168}{33} and \frac{28}{33} have the same denominator, add them by adding their numerators.
\frac{196}{33}+\frac{29}{33}+\frac{30}{33}=m^{2}\pi
Add 168 and 28 to get 196.
\frac{196+29}{33}+\frac{30}{33}=m^{2}\pi
Since \frac{196}{33} and \frac{29}{33} have the same denominator, add them by adding their numerators.
\frac{225}{33}+\frac{30}{33}=m^{2}\pi
Add 196 and 29 to get 225.
\frac{75}{11}+\frac{30}{33}=m^{2}\pi
Reduce the fraction \frac{225}{33} to lowest terms by extracting and canceling out 3.
\frac{75}{11}+\frac{10}{11}=m^{2}\pi
Reduce the fraction \frac{30}{33} to lowest terms by extracting and canceling out 3.
\frac{75+10}{11}=m^{2}\pi
Since \frac{75}{11} and \frac{10}{11} have the same denominator, add them by adding their numerators.
\frac{85}{11}=m^{2}\pi
Add 75 and 10 to get 85.
m^{2}\pi =\frac{85}{11}
Swap sides so that all variable terms are on the left hand side.
\frac{\pi m^{2}}{\pi }=\frac{\frac{85}{11}}{\pi }
Divide both sides by \pi .
m^{2}=\frac{\frac{85}{11}}{\pi }
Dividing by \pi undoes the multiplication by \pi .
m^{2}=\frac{85}{11\pi }
Divide \frac{85}{11} by \pi .
m=\frac{85}{\sqrt{935\pi }} m=-\frac{85}{\sqrt{935\pi }}
Take the square root of both sides of the equation.
\frac{21}{33}+\frac{22}{33}+\frac{23}{33}+\frac{24}{33}+\frac{25}{33}+\frac{26}{33}+\frac{27}{33}+\frac{28}{33}+\frac{29}{33}+\frac{30}{33}=m^{2}\pi
Multiply m and m to get m^{2}.
\frac{21+22}{33}+\frac{23}{33}+\frac{24}{33}+\frac{25}{33}+\frac{26}{33}+\frac{27}{33}+\frac{28}{33}+\frac{29}{33}+\frac{30}{33}=m^{2}\pi
Since \frac{21}{33} and \frac{22}{33} have the same denominator, add them by adding their numerators.
\frac{43}{33}+\frac{23}{33}+\frac{24}{33}+\frac{25}{33}+\frac{26}{33}+\frac{27}{33}+\frac{28}{33}+\frac{29}{33}+\frac{30}{33}=m^{2}\pi
Add 21 and 22 to get 43.
\frac{43+23}{33}+\frac{24}{33}+\frac{25}{33}+\frac{26}{33}+\frac{27}{33}+\frac{28}{33}+\frac{29}{33}+\frac{30}{33}=m^{2}\pi
Since \frac{43}{33} and \frac{23}{33} have the same denominator, add them by adding their numerators.
\frac{66}{33}+\frac{24}{33}+\frac{25}{33}+\frac{26}{33}+\frac{27}{33}+\frac{28}{33}+\frac{29}{33}+\frac{30}{33}=m^{2}\pi
Add 43 and 23 to get 66.
2+\frac{24}{33}+\frac{25}{33}+\frac{26}{33}+\frac{27}{33}+\frac{28}{33}+\frac{29}{33}+\frac{30}{33}=m^{2}\pi
Divide 66 by 33 to get 2.
2+\frac{8}{11}+\frac{25}{33}+\frac{26}{33}+\frac{27}{33}+\frac{28}{33}+\frac{29}{33}+\frac{30}{33}=m^{2}\pi
Reduce the fraction \frac{24}{33} to lowest terms by extracting and canceling out 3.
\frac{22}{11}+\frac{8}{11}+\frac{25}{33}+\frac{26}{33}+\frac{27}{33}+\frac{28}{33}+\frac{29}{33}+\frac{30}{33}=m^{2}\pi
Convert 2 to fraction \frac{22}{11}.
\frac{22+8}{11}+\frac{25}{33}+\frac{26}{33}+\frac{27}{33}+\frac{28}{33}+\frac{29}{33}+\frac{30}{33}=m^{2}\pi
Since \frac{22}{11} and \frac{8}{11} have the same denominator, add them by adding their numerators.
\frac{30}{11}+\frac{25}{33}+\frac{26}{33}+\frac{27}{33}+\frac{28}{33}+\frac{29}{33}+\frac{30}{33}=m^{2}\pi
Add 22 and 8 to get 30.
\frac{90}{33}+\frac{25}{33}+\frac{26}{33}+\frac{27}{33}+\frac{28}{33}+\frac{29}{33}+\frac{30}{33}=m^{2}\pi
Least common multiple of 11 and 33 is 33. Convert \frac{30}{11} and \frac{25}{33} to fractions with denominator 33.
\frac{90+25}{33}+\frac{26}{33}+\frac{27}{33}+\frac{28}{33}+\frac{29}{33}+\frac{30}{33}=m^{2}\pi
Since \frac{90}{33} and \frac{25}{33} have the same denominator, add them by adding their numerators.
\frac{115}{33}+\frac{26}{33}+\frac{27}{33}+\frac{28}{33}+\frac{29}{33}+\frac{30}{33}=m^{2}\pi
Add 90 and 25 to get 115.
\frac{115+26}{33}+\frac{27}{33}+\frac{28}{33}+\frac{29}{33}+\frac{30}{33}=m^{2}\pi
Since \frac{115}{33} and \frac{26}{33} have the same denominator, add them by adding their numerators.
\frac{141}{33}+\frac{27}{33}+\frac{28}{33}+\frac{29}{33}+\frac{30}{33}=m^{2}\pi
Add 115 and 26 to get 141.
\frac{47}{11}+\frac{27}{33}+\frac{28}{33}+\frac{29}{33}+\frac{30}{33}=m^{2}\pi
Reduce the fraction \frac{141}{33} to lowest terms by extracting and canceling out 3.
\frac{47}{11}+\frac{9}{11}+\frac{28}{33}+\frac{29}{33}+\frac{30}{33}=m^{2}\pi
Reduce the fraction \frac{27}{33} to lowest terms by extracting and canceling out 3.
\frac{47+9}{11}+\frac{28}{33}+\frac{29}{33}+\frac{30}{33}=m^{2}\pi
Since \frac{47}{11} and \frac{9}{11} have the same denominator, add them by adding their numerators.
\frac{56}{11}+\frac{28}{33}+\frac{29}{33}+\frac{30}{33}=m^{2}\pi
Add 47 and 9 to get 56.
\frac{168}{33}+\frac{28}{33}+\frac{29}{33}+\frac{30}{33}=m^{2}\pi
Least common multiple of 11 and 33 is 33. Convert \frac{56}{11} and \frac{28}{33} to fractions with denominator 33.
\frac{168+28}{33}+\frac{29}{33}+\frac{30}{33}=m^{2}\pi
Since \frac{168}{33} and \frac{28}{33} have the same denominator, add them by adding their numerators.
\frac{196}{33}+\frac{29}{33}+\frac{30}{33}=m^{2}\pi
Add 168 and 28 to get 196.
\frac{196+29}{33}+\frac{30}{33}=m^{2}\pi
Since \frac{196}{33} and \frac{29}{33} have the same denominator, add them by adding their numerators.
\frac{225}{33}+\frac{30}{33}=m^{2}\pi
Add 196 and 29 to get 225.
\frac{75}{11}+\frac{30}{33}=m^{2}\pi
Reduce the fraction \frac{225}{33} to lowest terms by extracting and canceling out 3.
\frac{75}{11}+\frac{10}{11}=m^{2}\pi
Reduce the fraction \frac{30}{33} to lowest terms by extracting and canceling out 3.
\frac{75+10}{11}=m^{2}\pi
Since \frac{75}{11} and \frac{10}{11} have the same denominator, add them by adding their numerators.
\frac{85}{11}=m^{2}\pi
Add 75 and 10 to get 85.
m^{2}\pi =\frac{85}{11}
Swap sides so that all variable terms are on the left hand side.
m^{2}\pi -\frac{85}{11}=0
Subtract \frac{85}{11} from both sides.
\pi m^{2}-\frac{85}{11}=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
m=\frac{0±\sqrt{0^{2}-4\pi \left(-\frac{85}{11}\right)}}{2\pi }
This equation is in standard form: ax^{2}+bx+c=0. Substitute \pi for a, 0 for b, and -\frac{85}{11} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{0±\sqrt{-4\pi \left(-\frac{85}{11}\right)}}{2\pi }
Square 0.
m=\frac{0±\sqrt{\left(-4\pi \right)\left(-\frac{85}{11}\right)}}{2\pi }
Multiply -4 times \pi .
m=\frac{0±\sqrt{\frac{340\pi }{11}}}{2\pi }
Multiply -4\pi times -\frac{85}{11}.
m=\frac{0±\frac{2\sqrt{935\pi }}{11}}{2\pi }
Take the square root of \frac{340\pi }{11}.
m=\frac{85}{\sqrt{935\pi }}
Now solve the equation m=\frac{0±\frac{2\sqrt{935\pi }}{11}}{2\pi } when ± is plus.
m=-\frac{85}{\sqrt{935\pi }}
Now solve the equation m=\frac{0±\frac{2\sqrt{935\pi }}{11}}{2\pi } when ± is minus.
m=\frac{85}{\sqrt{935\pi }} m=-\frac{85}{\sqrt{935\pi }}
The equation is now solved.