\left. \begin{array} { l } { y = k x }\\ { y = 24 }\\ { x = 5 }\\ { l = k }\\ { m = y }\\ { n = 6 }\\ { o = 15 }\\ { p = 20 }\\ { q = 23 }\\ { \text{Solve for } r,s,t,u,v,w \text{ where} } \\ { r = l }\\ { s = m }\\ { t = n }\\ { u = o }\\ { v = p }\\ { w = q } \end{array} \right.
Solve for y, k, x, l, m, n, o, p, q, r, s, t, u, v, w
r = \frac{24}{5} = 4\frac{4}{5} = 4.8
t=6
s=24
u=15
v=20
w=23
Share
Copied to clipboard
24=k\times 5
Consider the first equation. Insert the known values of variables into the equation.
\frac{24}{5}=k
Divide both sides by 5.
k=\frac{24}{5}
Swap sides so that all variable terms are on the left hand side.
l=\frac{24}{5}
Consider the fourth equation. Insert the known values of variables into the equation.
r=\frac{24}{5}
Consider the equation (10). Insert the known values of variables into the equation.
y=24 k=\frac{24}{5} x=5 l=\frac{24}{5} m=24 n=6 o=15 p=20 q=23 r=\frac{24}{5} s=24 t=6 u=15 v=20 w=23
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}