Solve for y, x, z, a
a = \frac{23}{2} = 11\frac{1}{2} = 11.5
Share
Copied to clipboard
1=-2x+6
Consider the second equation. Insert the known values of variables into the equation.
-2x+6=1
Swap sides so that all variable terms are on the left hand side.
-2x=1-6
Subtract 6 from both sides.
-2x=-5
Subtract 6 from 1 to get -5.
x=\frac{-5}{-2}
Divide both sides by -2.
x=\frac{5}{2}
Fraction \frac{-5}{-2} can be simplified to \frac{5}{2} by removing the negative sign from both the numerator and the denominator.
z=5\times \frac{5}{2}-1
Consider the third equation. Insert the known values of variables into the equation.
z=\frac{25}{2}-1
Multiply 5 and \frac{5}{2} to get \frac{25}{2}.
z=\frac{23}{2}
Subtract 1 from \frac{25}{2} to get \frac{23}{2}.
a=\frac{23}{2}
Consider the fourth equation. Insert the known values of variables into the equation.
y=1 x=\frac{5}{2} z=\frac{23}{2} a=\frac{23}{2}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}