Solve for x, y, z
x=\frac{a-2}{3}
y=\frac{a+1}{3}
z=a
Share
Copied to clipboard
z=x+2y x-y=-1 a=z
Reorder the equations.
a=x+2y
Substitute x+2y for z in the equation a=z.
y=x+1 x=a-2y
Solve the second equation for y and the third equation for x.
x=a-2\left(x+1\right)
Substitute x+1 for y in the equation x=a-2y.
x=-\frac{2}{3}+\frac{1}{3}a
Solve x=a-2\left(x+1\right) for x.
y=-\frac{2}{3}+\frac{1}{3}a+1
Substitute -\frac{2}{3}+\frac{1}{3}a for x in the equation y=x+1.
y=\frac{1}{3}+\frac{1}{3}a
Calculate y from y=-\frac{2}{3}+\frac{1}{3}a+1.
z=-\frac{2}{3}+\frac{1}{3}a+2\left(\frac{1}{3}+\frac{1}{3}a\right)
Substitute \frac{1}{3}+\frac{1}{3}a for y and -\frac{2}{3}+\frac{1}{3}a for x in the equation z=x+2y.
z=a
Calculate z from z=-\frac{2}{3}+\frac{1}{3}a+2\left(\frac{1}{3}+\frac{1}{3}a\right).
x=-\frac{2}{3}+\frac{1}{3}a y=\frac{1}{3}+\frac{1}{3}a z=a
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}