Solve for x, y, z
z=-28
Share
Copied to clipboard
x-\left(5+3x-\left(5x-6-x\right)\right)=-3
Consider the first equation. To find the opposite of 6+x, find the opposite of each term.
x-\left(5+3x-\left(4x-6\right)\right)=-3
Combine 5x and -x to get 4x.
x-\left(5+3x-4x+6\right)=-3
To find the opposite of 4x-6, find the opposite of each term.
x-\left(5-x+6\right)=-3
Combine 3x and -4x to get -x.
x-\left(11-x\right)=-3
Add 5 and 6 to get 11.
x-11+x=-3
To find the opposite of 11-x, find the opposite of each term.
2x-11=-3
Combine x and x to get 2x.
2x=-3+11
Add 11 to both sides.
2x=8
Add -3 and 11 to get 8.
x=\frac{8}{2}
Divide both sides by 2.
x=4
Divide 8 by 2 to get 4.
y=9\times 4-\left(5\times 4+1\right)-52+8\times 4-\left(7\times 4-5\right)
Consider the second equation. Insert the known values of variables into the equation.
y=36-\left(5\times 4+1\right)-52+32-\left(7\times 4-5\right)
Do the multiplications.
y=36-\left(20+1\right)-52+32-\left(7\times 4-5\right)
Multiply 5 and 4 to get 20.
y=36-21-52+32-\left(7\times 4-5\right)
Add 20 and 1 to get 21.
y=15-52+32-\left(7\times 4-5\right)
Subtract 21 from 36 to get 15.
y=-37+32-\left(7\times 4-5\right)
Subtract 52 from 15 to get -37.
y=-5-\left(7\times 4-5\right)
Add -37 and 32 to get -5.
y=-5-\left(28-5\right)
Multiply 7 and 4 to get 28.
y=-5-23
Subtract 5 from 28 to get 23.
y=-28
Subtract 23 from -5 to get -28.
z=-28
Consider the third equation. Insert the known values of variables into the equation.
x=4 y=-28 z=-28
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}