Skip to main content
Solve for x, y, z, a, b
Tick mark Image

Similar Problems from Web Search

Share

\left(3+\sqrt{5}\right)^{2}-2\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)+\left(3-\sqrt{5}\right)^{2}=z
Consider the first equation. Insert the known values of variables into the equation.
9+6\sqrt{5}+\left(\sqrt{5}\right)^{2}-2\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)+\left(3-\sqrt{5}\right)^{2}=z
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3+\sqrt{5}\right)^{2}.
9+6\sqrt{5}+5-2\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)+\left(3-\sqrt{5}\right)^{2}=z
The square of \sqrt{5} is 5.
14+6\sqrt{5}-2\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)+\left(3-\sqrt{5}\right)^{2}=z
Add 9 and 5 to get 14.
14+6\sqrt{5}+\left(-6-2\sqrt{5}\right)\left(3-\sqrt{5}\right)+\left(3-\sqrt{5}\right)^{2}=z
Use the distributive property to multiply -2 by 3+\sqrt{5}.
14+6\sqrt{5}-18+2\left(\sqrt{5}\right)^{2}+\left(3-\sqrt{5}\right)^{2}=z
Use the distributive property to multiply -6-2\sqrt{5} by 3-\sqrt{5} and combine like terms.
14+6\sqrt{5}-18+2\times 5+\left(3-\sqrt{5}\right)^{2}=z
The square of \sqrt{5} is 5.
14+6\sqrt{5}-18+10+\left(3-\sqrt{5}\right)^{2}=z
Multiply 2 and 5 to get 10.
14+6\sqrt{5}-8+\left(3-\sqrt{5}\right)^{2}=z
Add -18 and 10 to get -8.
6+6\sqrt{5}+\left(3-\sqrt{5}\right)^{2}=z
Subtract 8 from 14 to get 6.
6+6\sqrt{5}+9-6\sqrt{5}+\left(\sqrt{5}\right)^{2}=z
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3-\sqrt{5}\right)^{2}.
6+6\sqrt{5}+9-6\sqrt{5}+5=z
The square of \sqrt{5} is 5.
6+6\sqrt{5}+14-6\sqrt{5}=z
Add 9 and 5 to get 14.
20+6\sqrt{5}-6\sqrt{5}=z
Add 6 and 14 to get 20.
20=z
Combine 6\sqrt{5} and -6\sqrt{5} to get 0.
z=20
Swap sides so that all variable terms are on the left hand side.
a=20
Consider the fourth equation. Insert the known values of variables into the equation.
b=20
Consider the fifth equation. Insert the known values of variables into the equation.
x=3+\sqrt{5} y=3-\sqrt{5} z=20 a=20 b=20
The system is now solved.