Solve for x, y, t, u, v, w, z
z = -\frac{15}{2} = -7\frac{1}{2} = -7.5
w = -\frac{15}{2} = -7\frac{1}{2} = -7.5
Share
Copied to clipboard
x=7
Consider the first equation. Add 6 and 1 to get 7.
y=-3
Consider the second equation. Subtract 1 from -2 to get -3.
0=-3-2t
Consider the third equation. Add -4 and 1 to get -3.
-3-2t=0
Swap sides so that all variable terms are on the left hand side.
-2t=3
Add 3 to both sides. Anything plus zero gives itself.
t=-\frac{3}{2}
Divide both sides by -2.
u=5\left(-\frac{3}{2}\right)
Consider the fourth equation. Insert the known values of variables into the equation.
u=-\frac{15}{2}
Multiply 5 and -\frac{3}{2} to get -\frac{15}{2}.
v=5\left(-\frac{3}{2}\right)
Consider the fifth equation. Insert the known values of variables into the equation.
v=-\frac{15}{2}
Multiply 5 and -\frac{3}{2} to get -\frac{15}{2}.
w=-\frac{15}{2}
Consider the equation (6). Insert the known values of variables into the equation.
z=-\frac{15}{2}
Consider the equation (7). Insert the known values of variables into the equation.
x=7 y=-3 t=-\frac{3}{2} u=-\frac{15}{2} v=-\frac{15}{2} w=-\frac{15}{2} z=-\frac{15}{2}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}