Solve for x, y, z, a, b, c
c=62
Share
Copied to clipboard
y=\left(4-\sqrt{15}\right)^{2}+\frac{1}{\left(4-\sqrt{15}\right)^{2}}
Consider the second equation. Insert the known values of variables into the equation.
y=16-8\sqrt{15}+\left(\sqrt{15}\right)^{2}+\frac{1}{\left(4-\sqrt{15}\right)^{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4-\sqrt{15}\right)^{2}.
y=16-8\sqrt{15}+15+\frac{1}{\left(4-\sqrt{15}\right)^{2}}
The square of \sqrt{15} is 15.
y=31-8\sqrt{15}+\frac{1}{\left(4-\sqrt{15}\right)^{2}}
Add 16 and 15 to get 31.
y=31-8\sqrt{15}+\frac{1}{16-8\sqrt{15}+\left(\sqrt{15}\right)^{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4-\sqrt{15}\right)^{2}.
y=31-8\sqrt{15}+\frac{1}{16-8\sqrt{15}+15}
The square of \sqrt{15} is 15.
y=31-8\sqrt{15}+\frac{1}{31-8\sqrt{15}}
Add 16 and 15 to get 31.
y=31-8\sqrt{15}+\frac{31+8\sqrt{15}}{\left(31-8\sqrt{15}\right)\left(31+8\sqrt{15}\right)}
Rationalize the denominator of \frac{1}{31-8\sqrt{15}} by multiplying numerator and denominator by 31+8\sqrt{15}.
y=31-8\sqrt{15}+\frac{31+8\sqrt{15}}{31^{2}-\left(-8\sqrt{15}\right)^{2}}
Consider \left(31-8\sqrt{15}\right)\left(31+8\sqrt{15}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
y=31-8\sqrt{15}+\frac{31+8\sqrt{15}}{961-\left(-8\sqrt{15}\right)^{2}}
Calculate 31 to the power of 2 and get 961.
y=31-8\sqrt{15}+\frac{31+8\sqrt{15}}{961-\left(-8\right)^{2}\left(\sqrt{15}\right)^{2}}
Expand \left(-8\sqrt{15}\right)^{2}.
y=31-8\sqrt{15}+\frac{31+8\sqrt{15}}{961-64\left(\sqrt{15}\right)^{2}}
Calculate -8 to the power of 2 and get 64.
y=31-8\sqrt{15}+\frac{31+8\sqrt{15}}{961-64\times 15}
The square of \sqrt{15} is 15.
y=31-8\sqrt{15}+\frac{31+8\sqrt{15}}{961-960}
Multiply 64 and 15 to get 960.
y=31-8\sqrt{15}+\frac{31+8\sqrt{15}}{1}
Subtract 960 from 961 to get 1.
y=31-8\sqrt{15}+31+8\sqrt{15}
Anything divided by one gives itself.
y=62-8\sqrt{15}+8\sqrt{15}
Add 31 and 31 to get 62.
y=62
Combine -8\sqrt{15} and 8\sqrt{15} to get 0.
z=62
Consider the third equation. Insert the known values of variables into the equation.
a=62
Consider the fourth equation. Insert the known values of variables into the equation.
b=62
Consider the fifth equation. Insert the known values of variables into the equation.
c=62
Consider the equation (6). Insert the known values of variables into the equation.
x=4-\sqrt{15} y=62 z=62 a=62 b=62 c=62
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}