Solve for x, y, z, a, b
a=11-8\sqrt{2}\approx -0.313708499
b=5\sqrt{2}-6\approx 1.071067812
Share
Copied to clipboard
y=\left(2\left(\sqrt{2}-1\right)+1\right)\left(2\left(\sqrt{2}-1\right)-1\right)
Consider the second equation. Insert the known values of variables into the equation.
y=\left(2\left(\sqrt{2}-1\right)\right)^{2}-1
Consider \left(2\left(\sqrt{2}-1\right)+1\right)\left(2\left(\sqrt{2}-1\right)-1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
y=\left(2\sqrt{2}-2\right)^{2}-1
Use the distributive property to multiply 2 by \sqrt{2}-1.
y=4\left(\sqrt{2}\right)^{2}-8\sqrt{2}+4-1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2\sqrt{2}-2\right)^{2}.
y=4\times 2-8\sqrt{2}+4-1
The square of \sqrt{2} is 2.
y=8-8\sqrt{2}+4-1
Multiply 4 and 2 to get 8.
y=12-8\sqrt{2}-1
Add 8 and 4 to get 12.
y=11-8\sqrt{2}
Subtract 1 from 12 to get 11.
z=\left(-\left(\sqrt{2}-1+1\right)\right)\left(3\left(\sqrt{2}-1\right)-2\right)
Consider the third equation. Insert the known values of variables into the equation.
z=\left(-\sqrt{2}\right)\left(3\left(\sqrt{2}-1\right)-2\right)
Add -1 and 1 to get 0.
z=\left(-\sqrt{2}\right)\left(3\sqrt{2}-3-2\right)
Use the distributive property to multiply 3 by \sqrt{2}-1.
z=\left(-\sqrt{2}\right)\left(3\sqrt{2}-5\right)
Subtract 2 from -3 to get -5.
z=3\left(-\sqrt{2}\right)\sqrt{2}-5\left(-\sqrt{2}\right)
Use the distributive property to multiply -\sqrt{2} by 3\sqrt{2}-5.
z=3\left(-\sqrt{2}\right)\sqrt{2}+5\sqrt{2}
Multiply -5 and -1 to get 5.
z=3\left(-1\right)\times 2+5\sqrt{2}
Multiply \sqrt{2} and \sqrt{2} to get 2.
z=-3\times 2+5\sqrt{2}
Multiply 3 and -1 to get -3.
z=-6+5\sqrt{2}
Multiply -3 and 2 to get -6.
a=11-8\sqrt{2}
Consider the fourth equation. Insert the known values of variables into the equation.
b=-6+5\sqrt{2}
Consider the fifth equation. Insert the known values of variables into the equation.
x=\sqrt{2}-1 y=11-8\sqrt{2} z=-6+5\sqrt{2} a=11-8\sqrt{2} b=-6+5\sqrt{2}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}