Solve for x, y, z, a, b
a=12
b=13
Share
Copied to clipboard
15x+3\left(3x-9\right)=60-5\left(5x-12\right)
Consider the first equation. Multiply both sides of the equation by 15, the least common multiple of 5,3.
15x+9x-27=60-5\left(5x-12\right)
Use the distributive property to multiply 3 by 3x-9.
24x-27=60-5\left(5x-12\right)
Combine 15x and 9x to get 24x.
24x-27=60-25x+60
Use the distributive property to multiply -5 by 5x-12.
24x-27=120-25x
Add 60 and 60 to get 120.
24x-27+25x=120
Add 25x to both sides.
49x-27=120
Combine 24x and 25x to get 49x.
49x=120+27
Add 27 to both sides.
49x=147
Add 120 and 27 to get 147.
x=\frac{147}{49}
Divide both sides by 49.
x=3
Divide 147 by 49 to get 3.
y=3+3\times 3
Consider the second equation. Insert the known values of variables into the equation.
y=3+9
Multiply 3 and 3 to get 9.
y=12
Add 3 and 9 to get 12.
z=5\times 3-2
Consider the third equation. Insert the known values of variables into the equation.
z=15-2
Multiply 5 and 3 to get 15.
z=13
Subtract 2 from 15 to get 13.
a=12
Consider the fourth equation. Insert the known values of variables into the equation.
b=13
Consider the fifth equation. Insert the known values of variables into the equation.
x=3 y=12 z=13 a=12 b=13
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}