Solve for r, s, t, u, v, w, x, y, z, a
a=16\pi \approx 50.265482457
Share
Copied to clipboard
s=2\pi \times 8
Consider the second equation. Insert the known values of variables into the equation.
s=16\pi
Multiply 2 and 8 to get 16.
t=16\pi
Consider the third equation. Insert the known values of variables into the equation.
u=16\pi
Consider the fourth equation. Insert the known values of variables into the equation.
v=16\pi
Consider the fifth equation. Insert the known values of variables into the equation.
w=16\pi
Consider the equation (6). Insert the known values of variables into the equation.
x=16\pi
Consider the equation (7). Insert the known values of variables into the equation.
y=16\pi
Consider the equation (8). Insert the known values of variables into the equation.
z=16\pi
Consider the equation (9). Insert the known values of variables into the equation.
a=16\pi
Consider the equation (10). Insert the known values of variables into the equation.
r=8 s=16\pi t=16\pi u=16\pi v=16\pi w=16\pi x=16\pi y=16\pi z=16\pi a=16\pi
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}