Solve for p, q, r, s, t, u, v, w, x
x=-6
Share
Copied to clipboard
s=-9.9+6.3+|6.3|-8.7
Consider the fourth equation. Insert the known values of variables into the equation.
s=-3.6+|6.3|-8.7
Add -9.9 and 6.3 to get -3.6.
s=-3.6+6.3-8.7
The absolute value of a real number a is a when a\geq 0, or -a when a<0. The absolute value of 6.3 is 6.3.
s=2.7-8.7
Add -3.6 and 6.3 to get 2.7.
s=-6
Subtract 8.7 from 2.7 to get -6.
t=-6
Consider the fifth equation. Insert the known values of variables into the equation.
u=-6
Consider the equation (6). Insert the known values of variables into the equation.
v=-6
Consider the equation (7). Insert the known values of variables into the equation.
w=-6
Consider the equation (8). Insert the known values of variables into the equation.
x=-6
Consider the equation (9). Insert the known values of variables into the equation.
p=6.3 q=-8.7 r=-9.9 s=-6 t=-6 u=-6 v=-6 w=-6 x=-6
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}