\left. \begin{array} { l } { p = -4 }\\ { q = -2 }\\ { r = {(| p | - q)} {(q + 6)} }\\ { s = 30 }\\ { t = 31 }\\ { u = r }\\ { v = s }\\ { w = t }\\ { \text{Solve for } x,y,z \text{ where} } \\ { x = u }\\ { y = v }\\ { z = w } \end{array} \right.
Solve for p, q, r, s, t, u, v, w, x, y, z
x=24
y=30
z=31
Share
Copied to clipboard
r=\left(|-4|-\left(-2\right)\right)\left(-2+6\right)
Consider the third equation. Insert the known values of variables into the equation.
r=\left(4-\left(-2\right)\right)\left(-2+6\right)
The absolute value of a real number a is a when a\geq 0, or -a when a<0. The absolute value of -4 is 4.
r=\left(4+2\right)\left(-2+6\right)
Multiply -1 and -2 to get 2.
r=6\left(-2+6\right)
Add 4 and 2 to get 6.
r=6\times 4
Add -2 and 6 to get 4.
r=24
Multiply 6 and 4 to get 24.
u=24
Consider the equation (6). Insert the known values of variables into the equation.
x=24
Consider the equation (9). Insert the known values of variables into the equation.
p=-4 q=-2 r=24 s=30 t=31 u=24 v=30 w=31 x=24 y=30 z=31
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}