Solve for p, q, r, s, t
t = \frac{13}{2} = 6\frac{1}{2} = 6.5
Share
Copied to clipboard
p=1
Consider the first equation. Divide 5 by 5 to get 1.
q=\frac{7\times 2+1}{2}-1
Consider the second equation. Insert the known values of variables into the equation.
q=\frac{14+1}{2}-1
Multiply 7 and 2 to get 14.
q=\frac{15}{2}-1
Add 14 and 1 to get 15.
q=\frac{13}{2}
Subtract 1 from \frac{15}{2} to get \frac{13}{2}.
r=\frac{13}{2}
Consider the third equation. Insert the known values of variables into the equation.
s=\frac{13}{2}
Consider the fourth equation. Insert the known values of variables into the equation.
t=\frac{13}{2}
Consider the fifth equation. Insert the known values of variables into the equation.
p=1 q=\frac{13}{2} r=\frac{13}{2} s=\frac{13}{2} t=\frac{13}{2}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}