Solve for m, n, o, p
p=-345.6
Share
Copied to clipboard
o=-10\times 1.2^{2}\left(-1\right)^{6}\left(-20\right)\times 1.2\left(-1\right)^{15}
Consider the third equation. Insert the known values of variables into the equation.
o=-10\times 1.2^{3}\left(-1\right)^{6}\left(-20\right)\left(-1\right)^{15}
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
o=-10\times 1.2^{3}\left(-1\right)^{21}\left(-20\right)
To multiply powers of the same base, add their exponents. Add 6 and 15 to get 21.
o=-10\times 1.728\left(-1\right)^{21}\left(-20\right)
Calculate 1.2 to the power of 3 and get 1.728.
o=-17.28\left(-1\right)^{21}\left(-20\right)
Multiply -10 and 1.728 to get -17.28.
o=-17.28\left(-1\right)\left(-20\right)
Calculate -1 to the power of 21 and get -1.
o=17.28\left(-20\right)
Multiply -17.28 and -1 to get 17.28.
o=-345.6
Multiply 17.28 and -20 to get -345.6.
p=-345.6
Consider the fourth equation. Insert the known values of variables into the equation.
m=1.2 n=-1 o=-345.6 p=-345.6
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}