Solve for m, n, o, p
p=3010
Share
Copied to clipboard
m=0
Consider the first equation. Multiply 0 and 25 to get 0.
n=35
Consider the second equation. Multiply 5 and 7 to get 35.
o=1\times 6\left(\frac{1}{8}\times 0+2\times 5\times 35\right)-\left(4\times 5\times 35-\frac{1\times 2+1}{2}\times 0\right)\left(-2\right)-\left(-12\times 0+14\times 35\right)
Consider the third equation. Insert the known values of variables into the equation.
o=6\left(\frac{1}{8}\times 0+2\times 5\times 35\right)-\left(4\times 5\times 35-\frac{1\times 2+1}{2}\times 0\right)\left(-2\right)-\left(-12\times 0+14\times 35\right)
Multiply 1 and 6 to get 6.
o=6\left(0+2\times 5\times 35\right)-\left(4\times 5\times 35-\frac{1\times 2+1}{2}\times 0\right)\left(-2\right)-\left(-12\times 0+14\times 35\right)
Multiply \frac{1}{8} and 0 to get 0.
o=6\left(0+10\times 35\right)-\left(4\times 5\times 35-\frac{1\times 2+1}{2}\times 0\right)\left(-2\right)-\left(-12\times 0+14\times 35\right)
Multiply 2 and 5 to get 10.
o=6\left(0+350\right)-\left(4\times 5\times 35-\frac{1\times 2+1}{2}\times 0\right)\left(-2\right)-\left(-12\times 0+14\times 35\right)
Multiply 10 and 35 to get 350.
o=6\times 350-\left(4\times 5\times 35-\frac{1\times 2+1}{2}\times 0\right)\left(-2\right)-\left(-12\times 0+14\times 35\right)
Add 0 and 350 to get 350.
o=2100-\left(4\times 5\times 35-\frac{1\times 2+1}{2}\times 0\right)\left(-2\right)-\left(-12\times 0+14\times 35\right)
Multiply 6 and 350 to get 2100.
o=2100-\left(20\times 35-\frac{1\times 2+1}{2}\times 0\right)\left(-2\right)-\left(-12\times 0+14\times 35\right)
Multiply 4 and 5 to get 20.
o=2100-\left(700-\frac{1\times 2+1}{2}\times 0\right)\left(-2\right)-\left(-12\times 0+14\times 35\right)
Multiply 20 and 35 to get 700.
o=2100-\left(700-\frac{2+1}{2}\times 0\right)\left(-2\right)-\left(-12\times 0+14\times 35\right)
Multiply 1 and 2 to get 2.
o=2100-\left(700-\frac{3}{2}\times 0\right)\left(-2\right)-\left(-12\times 0+14\times 35\right)
Add 2 and 1 to get 3.
o=2100-\left(700-0\right)\left(-2\right)-\left(-12\times 0+14\times 35\right)
Multiply \frac{3}{2} and 0 to get 0.
o=2100-700\left(-2\right)-\left(-12\times 0+14\times 35\right)
Subtract 0 from 700 to get 700.
o=2100-\left(-1400\right)-\left(-12\times 0+14\times 35\right)
Multiply 700 and -2 to get -1400.
o=2100+1400-\left(-12\times 0+14\times 35\right)
The opposite of -1400 is 1400.
o=3500-\left(-12\times 0+14\times 35\right)
Add 2100 and 1400 to get 3500.
o=3500-\left(0+490\right)
Do the multiplications.
o=3500-490
Add 0 and 490 to get 490.
o=3010
Subtract 490 from 3500 to get 3010.
p=3010
Consider the fourth equation. Insert the known values of variables into the equation.
m=0 n=35 o=3010 p=3010
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}