Solve for x
x=-\frac{3l}{y}+21
y\neq 0
Graph
Share
Copied to clipboard
3l=-\frac{1}{3}x\times 3y+3y\times 7
Multiply both sides of the equation by 3y, the least common multiple of y,3.
3l=-xy+3y\times 7
Multiply -\frac{1}{3} and 3 to get -1.
3l=-xy+21y
Multiply 3 and 7 to get 21.
-xy+21y=3l
Swap sides so that all variable terms are on the left hand side.
-xy=3l-21y
Subtract 21y from both sides.
\left(-y\right)x=3l-21y
The equation is in standard form.
\frac{\left(-y\right)x}{-y}=\frac{3l-21y}{-y}
Divide both sides by -y.
x=\frac{3l-21y}{-y}
Dividing by -y undoes the multiplication by -y.
x=-\frac{3l}{y}+21
Divide 3l-21y by -y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}