Solve for k, l, m, n, o, p
p=\frac{64}{729}\approx 0.087791495
Share
Copied to clipboard
k=6
Consider the first equation. Add 1 and 5 to get 6.
l=\left(\frac{2}{3}\right)^{6}
Consider the second equation. Insert the known values of variables into the equation.
l=\frac{64}{729}
Calculate \frac{2}{3} to the power of 6 and get \frac{64}{729}.
m=\frac{64}{729}
Consider the third equation. Insert the known values of variables into the equation.
n=\frac{64}{729}
Consider the fourth equation. Insert the known values of variables into the equation.
o=\frac{64}{729}
Consider the fifth equation. Insert the known values of variables into the equation.
p=\frac{64}{729}
Consider the equation (6). Insert the known values of variables into the equation.
k=6 l=\frac{64}{729} m=\frac{64}{729} n=\frac{64}{729} o=\frac{64}{729} p=\frac{64}{729}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}