Solve for h, x, j
j=i
Share
Copied to clipboard
\frac{i}{-1}=h
Consider the second equation. Divide both sides by -1.
-i=h
Divide i by -1 to get -i.
h=-i
Swap sides so that all variable terms are on the left hand side.
-ix=4x+3
Consider the first equation. Insert the known values of variables into the equation.
-ix-4x=3
Subtract 4x from both sides.
\left(-4-i\right)x=3
Combine -ix and -4x to get \left(-4-i\right)x.
x=\frac{3}{-4-i}
Divide both sides by -4-i.
x=\frac{3\left(-4+i\right)}{\left(-4-i\right)\left(-4+i\right)}
Multiply both numerator and denominator of \frac{3}{-4-i} by the complex conjugate of the denominator, -4+i.
x=\frac{-12+3i}{17}
Do the multiplications in \frac{3\left(-4+i\right)}{\left(-4-i\right)\left(-4+i\right)}.
x=-\frac{12}{17}+\frac{3}{17}i
Divide -12+3i by 17 to get -\frac{12}{17}+\frac{3}{17}i.
h=-i x=-\frac{12}{17}+\frac{3}{17}i j=i
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}