Solve for g, x, h
x=\frac{324}{325}-\frac{18}{325}i\approx 0.996923077-0.055384615i
g=-\frac{1}{6}i\approx -0.166666667i
h=i
Share
Copied to clipboard
h=i
Consider the third equation. Swap sides so that all variable terms are on the left hand side.
i=g\left(-6\right)
Consider the second equation. Insert the known values of variables into the equation.
\frac{i}{-6}=g
Divide both sides by -6.
-\frac{1}{6}i=g
Divide i by -6 to get -\frac{1}{6}i.
g=-\frac{1}{6}i
Swap sides so that all variable terms are on the left hand side.
-\frac{1}{6}ix=3x-3
Consider the first equation. Insert the known values of variables into the equation.
-\frac{1}{6}ix-3x=-3
Subtract 3x from both sides.
\left(-3-\frac{1}{6}i\right)x=-3
Combine -\frac{1}{6}ix and -3x to get \left(-3-\frac{1}{6}i\right)x.
x=\frac{-3}{-3-\frac{1}{6}i}
Divide both sides by -3-\frac{1}{6}i.
x=\frac{-3\left(-3+\frac{1}{6}i\right)}{\left(-3-\frac{1}{6}i\right)\left(-3+\frac{1}{6}i\right)}
Multiply both numerator and denominator of \frac{-3}{-3-\frac{1}{6}i} by the complex conjugate of the denominator, -3+\frac{1}{6}i.
x=\frac{9-\frac{1}{2}i}{\frac{325}{36}}
Do the multiplications in \frac{-3\left(-3+\frac{1}{6}i\right)}{\left(-3-\frac{1}{6}i\right)\left(-3+\frac{1}{6}i\right)}.
x=\frac{324}{325}-\frac{18}{325}i
Divide 9-\frac{1}{2}i by \frac{325}{36} to get \frac{324}{325}-\frac{18}{325}i.
g=-\frac{1}{6}i x=\frac{324}{325}-\frac{18}{325}i h=i
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}