Solve for g, x, h
x=\frac{1}{2}i=0.5i
g=-\frac{105}{2}i=-52.5i
h=i
Share
Copied to clipboard
h=i
Consider the third equation. Swap sides so that all variable terms are on the left hand side.
i=2x
Consider the second equation. Insert the known values of variables into the equation.
\frac{i}{2}=x
Divide both sides by 2.
\frac{1}{2}i=x
Divide i by 2 to get \frac{1}{2}i.
x=\frac{1}{2}i
Swap sides so that all variable terms are on the left hand side.
g\times \left(\frac{1}{2}i\right)=-5\times \left(\frac{1}{2}i\right)^{2}+25
Consider the first equation. Insert the known values of variables into the equation.
g\times \left(\frac{1}{2}i\right)=-5\left(-\frac{1}{4}\right)+25
Calculate \frac{1}{2}i to the power of 2 and get -\frac{1}{4}.
g\times \left(\frac{1}{2}i\right)=\frac{5}{4}+25
Multiply -5 and -\frac{1}{4} to get \frac{5}{4}.
g\times \left(\frac{1}{2}i\right)=\frac{105}{4}
Add \frac{5}{4} and 25 to get \frac{105}{4}.
g=\frac{\frac{105}{4}}{\frac{1}{2}i}
Divide both sides by \frac{1}{2}i.
g=\frac{\frac{105}{4}i}{-\frac{1}{2}}
Multiply both numerator and denominator of \frac{\frac{105}{4}}{\frac{1}{2}i} by imaginary unit i.
g=-\frac{105}{2}i
Divide \frac{105}{4}i by -\frac{1}{2} to get -\frac{105}{2}i.
g=-\frac{105}{2}i x=\frac{1}{2}i h=i
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}