Solve for g, x, h
x=\frac{1200}{901}-\frac{40}{901}i\approx 1.331853496-0.044395117i
g=\frac{1}{10}i=0.1i
h=i
Share
Copied to clipboard
h=i
Consider the third equation. Swap sides so that all variable terms are on the left hand side.
i=g\times 10
Consider the second equation. Insert the known values of variables into the equation.
\frac{i}{10}=g
Divide both sides by 10.
\frac{1}{10}i=g
Divide i by 10 to get \frac{1}{10}i.
g=\frac{1}{10}i
Swap sides so that all variable terms are on the left hand side.
\frac{1}{10}ix=-3x+4
Consider the first equation. Insert the known values of variables into the equation.
\frac{1}{10}ix+3x=4
Add 3x to both sides.
\left(3+\frac{1}{10}i\right)x=4
Combine \frac{1}{10}ix and 3x to get \left(3+\frac{1}{10}i\right)x.
x=\frac{4}{3+\frac{1}{10}i}
Divide both sides by 3+\frac{1}{10}i.
x=\frac{4\left(3-\frac{1}{10}i\right)}{\left(3+\frac{1}{10}i\right)\left(3-\frac{1}{10}i\right)}
Multiply both numerator and denominator of \frac{4}{3+\frac{1}{10}i} by the complex conjugate of the denominator, 3-\frac{1}{10}i.
x=\frac{12-\frac{2}{5}i}{\frac{901}{100}}
Do the multiplications in \frac{4\left(3-\frac{1}{10}i\right)}{\left(3+\frac{1}{10}i\right)\left(3-\frac{1}{10}i\right)}.
x=\frac{1200}{901}-\frac{40}{901}i
Divide 12-\frac{2}{5}i by \frac{901}{100} to get \frac{1200}{901}-\frac{40}{901}i.
g=\frac{1}{10}i x=\frac{1200}{901}-\frac{40}{901}i h=i
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}