Solve for x
x=1
f=1\text{ and }g=1\text{ and }h=1
Share
Copied to clipboard
f\times 1=p\times 1^{2}-\left(p+3\right)\times 1+4
Consider the first equation. Insert the known values of variables into the equation.
f\times 1=p\times 1-\left(p+3\right)\times 1+4
Calculate 1 to the power of 2 and get 1.
f\times 1=p\times 1-\left(p+3\right)+4
Use the distributive property to multiply p+3 by 1.
f\times 1=p\times 1-p-3+4
To find the opposite of p+3, find the opposite of each term.
f\times 1=-3+4
Combine p\times 1 and -p to get 0.
f\times 1=1
Add -3 and 4 to get 1.
f=1
Divide both sides by 1.
f=1 x=1 g=1 h=1
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}